Strefa Teisseyre’a-Tornquista – dawne koncepcje a nowe dane
Abstract
Teisseyre-Tornquist Zone – evolving approaches and new data.A b s t r a c t. Concepts prevailing among the Polish geoscientists during the last decades assumed that the Teisseyre-Tornquist Zone is a major tectonic discontinuity separating the pre-Ediacaran East European Craton (EEC) crust from the Paleozoic Platform composed of terranes accreted during the Caledonian and Variscan orogenic processes. The recent interpretations of the TTZ by Mazur and collaborators, based on gravity modelling and new PolandSPAN seismic reflection data, revive earlier ideas of the EEC crust extending to the western Poland and NE Germany. These authors propose that the TTZ is in fact a Sveconorwegian (ca. 1 Ga old) collisional suture marked by a crustal keel expressed as the Pomeranian and Kuiavian gravity lows in northern and central Poland. However, the present review of seismic data available, as well as a closer evaluation of the modelling results, do not confirm the keel/suture concept. On the other hand, the idea of the TTZ as an Early Paleozoic tectonic discontinuity is supported by several lines of evidence, including a strong regional magnetic gradient and a contrast in the crustal structure. The latter is revealed by seismic velocity distribution from the refraction data, in the results of magnetotelluric profiling and in recent seismicity patterns. The interpretation of the PolandSPAN data attempting to prove the continuity of the cratonic crust and its Ediacaran-Lower Paleozoic cover across the TTZ appears questionable. At the same time the POLCRUST-01 deep seismic profile in SE Poland documents that the zone is associated with the subvertical Tomaszów Fault. The basement top displacement by ca. 0,5 km and associated change in its slope are related to the fault whose deep crustal roots are further documented by reflectivity patterns in the lower crust. The recent modelling exercise by Krzywiec and collaborators aimed at questioning the thick-skinned nature of this fault does not present compelling results, being based on a poorly constrained geological model. The general conclusion from the present review is that the recently published data either support or at least do not contradict the concept of the TTZ as a tectonic zone separating the continuous EEC crust from several allochtonous blocks – mostly proximal Early Paleozoic terranes to the south-west. The lithospheric memory of the TTZ echoed in successive stages of its reactivation in different intra-plate tectonic regimes – transpressive Variscan, mostly extensional or transtensional Permian through Early Cretaceous, compressional Late Cretaceous and finally Neogene, related to the Carpathian orogenic compression.Downloads
Issue
Section
Geochemia, mineralogia, petrologia