Badania geochemiczne i biogeochemiczne w parkach narodowych

Zdzisław M. Migaszewski, Paul J. Lamothe, James G. Crock

Abstract


GEOCHEMICAL AND BIOGEOCHEMICAL INVESTIGATIONS IN NATIONAL PARKS

Summary
National parks hold a key position among nature protection areas including a diversity of resources - natural, cultural, recreational and scenic. These "inviolable sanctuaries" are simultaneosuly ecologic knots and pristine nature refuges due to the presence of a number of unique plant and animaI species. These species make up a natural gene bank. Classically, the level of biologic degradation in national parks is determined on the basis of qualitative and quantitative studies of plant bioindicators. Their scope encompasses phytosociologie survey the purpose of which is to identify floral assemblages with a detailed list of species to record future changes in their number. The best biomonitors of air quality are epiphytic lichens, ground mosses and conifers. Geochemical and biogeochemical investigations are widely performed in the U.S.A. to evaluate the degree of pollution in the nature protection areas including national parks (Gough et al., 1988a, b; Crock et al., 1992a, 1993; Jackson et al., 1995). Variability of element concentrations in soils and plants is assessed by using unbalanced, nested analysis-of-variance (ANOV A). It enables obtaining important statistical information with a minimum number of samples. In some cases a combined grid and barbell sampling design is applied (Jackson et al., 1995). In specific mountainous parks a method of 2-3 transects paralleI to the extent of range (crest) is recommended. To determine the impact of a single pollution source on a given park, traverse sampling beginning near the emitter is used (Crock et al., 1992, 1993). The obtained results are a "snapshot" of chemical composition of soils and plant bioindicators that can be a reference for any future changes in the concentration level of chemical elements and organics. In addition, baseline element and organics composition of the media mentioned above can be compared with that obtained for geochemical atlases of polluted urban and industrial areas. Geochemical and biogeochemical investigations are also used for determining natural or anthropogenic sources of pollution. The best way to trace them is sulfur isotopes (Jackson et al., 1996).

Full Text:

PDF (Polish)