PARAMETRY FIZYCZNO-MECHANICZNE GRUNTÓW SPOISTYCH TRASY MOSTOWEJ „LAZIENKOWSKA"

UKD 624.131.22:624.131.431;551.782.2/.79(438.112 trasa mostowa ,,Lazienkowska")

Utwory plioceńskie stanowią wiekowo najstarszy pakiet gruntów powstaly w warunkach sedymentacji jeziornej. W badanym podłożu główną ich masẹ (zgodnie z PN) stanowią grunty spoiste o zawartości frakcji iłowej od 14 do 84\%. Naniesione na trójkącie Fereta (ryc. 1) punkty odpowiadające poszczególnym próbkom tworza skupiony zbiór pokrywający część jego powierzchni obejmujacej głównie pole itu, iłu pylastego oraz nieznacznie wkraczajace na pole ciężkich glin pylastych. Inne rodzaje gruntu charakteryzujące się zawartoscią frakcji piaskowej ponad 30% odgrywaja podrzędną rolę, mają charakter glin ciężkich, a sporadycznie nawet typowych glin. Na przedstawionej ryc. 1 widać, że procientowa zawartosć frakcji iłowej iłu pylastego kształtuje się w wysokości $31-44 \%$, a dla iłu $-31-68 \%$, a wyjątkowo nawet 84%. Te wartości zasługuja na uwage, gdyż wskazują na możliwość istnienia znacznych różnic w stosunkach ilościowych w zakresie frakcji iłowej w obrẹbie genetycznie jednego rodzaju - iłu plioceńskiego. Wobec tego, że w rozpatrywanỳm zbiorze próbki gruntów o wysokiej zawartości frakcji iłowej odgrywaja podrzędną rolę, dla dalszych rozważań przyjęto za miarodajne wielkosci skupione głównie w przedziale $20-68 \%$ frakcji iłowej, przy zawartości frakcji piaskowej do 22\%. Pozostałe próbki wyeliminowano jako nietypowe.

Uzyskane wyniki z analizy granulometrycznej iłów poznańskich porównano z badaniami iłów Warszawy (2) oraz Dobrzynia nad Wistą i innych okolic (7). Oczywiste jest, że dla przeprowadzenia paraleli najbardziej interesującymi
są wyniki zestawione w pracy W. Fortunata w odniesieniu do iłów Warszawy pobranych z głẹbokości 18,9—57,9 m poniżej terenu w czasie wierceń dla potrzeb metra. Zgodnie z badaniami W. Fortunata na głębokosci tej spoiste grunty ilaste nie wykazują na ogół dużych różnic w uziarnieniu, iły pylaste charakteryzuja się zawartością frakcji iłowej w granicach $35-45 \%$, a iły - $31-51 \%$. Porównujac otrzymane dane przez W. Fortunata z wynikami oznaczeń laboratoryjnych próbek gruntu dia trasy mostowej stwierdzono w obrębie rozpatrywanych iłów plioceńskich większe zróżnicowanie litologiczne, pozwalające na wydzielenie iłów, iłów pylastych i glin pylastych ciężkich. Należy zauważyć, że utwory te są zbližone swoim składem do iłów z Dobrzynia nad Wisłą i innych miejscowości, charakteryzujacych siẹ frakcją iłową w wysokości do 71% (7).

Dla uzyskania podstawowych wskaźników geotechnicznych pobranych próbek gruntu, wykonano dalsze oznaczenia laboratoryjne cech fizyczno-mechanicznych: wilgotnosci naturalnej, ciężarów objętościowych, granic płynności | plastyczności oraz kątów tarcia wewnẹtrznego i kohezji. Dysponując posiadanymi wynikami dażono do ustalenia związków pomiędzy poszczególnymi cechami.

Wỵniki liczbowe granic płynności i plastyczności uśredniono w zależności od zawartosci frakcji iłowej w następujacych przedziałach $10-20 \%, 20-30 \%, 30 \%-40 \%$ itd. Szczegółową postać tej zależności obrazuje poglądowo wykres (ryc. 2). W odniesieniu do granicy plynności otrzy-

Ryc. 1. Zestawienie wyników składu granulometrycznego iłọw poznańskich
... wyniki badań laboratoryjnych.
Fig. 1. Grain-size distribution of Poznań clays
... laboratory results

Ryc. 2. Zależność między granicq płynności Ly i plastyczności Lp a zawartościq frakcji iłowej w iłach poznańskich 1 - granica płynności, 2 - granica plastycznosci.

Fig. 2. Dependence of liquid and plastic limits (Ly and Lp, respectively on clay fraction content in Poznań clays

1 - limit of liquid, 2 - limit of plastic.

Ryc. 3. Zależność kqta tarcia wewnętrznego, pozornego i spójności iów poznańskich od wilgotności naturalnej z uwzgiędnieniem glębokosel
$1-\varphi=3^{\circ}, 2-C=0,3 \mathrm{kG} / \mathrm{cm}^{2}, 3-Z=\mathrm{mb}$. glębokości pobrania probki.
mano dwie linie równoległe oddalone od siebie w granicach 6\% wilgotnosci. Prosta przerywana charakteryzuje uśredniona zależność wartości granicy płynności od zawartości frakcji iłowej. Dla zakresu zmienności od 20% do 70% frakcji iłowej zależność ta ma następująca postać wyrażona wzorem:

$$
L_{y}=1,4 I+14 \ldots
$$

Analogicznie zależność granicy plastyczności od zawartosci frakcji iłowej przyjmie postać:

$$
L_{p}=0,41+9 \ldots
$$

W Ilach plioceńskich granice płynności i plastyczności są wyraźnie uzależnione od zawartości w gruncie frakcjí

Fig. 3. Dependence of angles of internal and apparent friction and cohesivness on natural moisture of Poznañ clays, with consideration of depth.
$1-\varphi=3^{\circ} .2-\mathrm{C}=0,3 \mathrm{kG} / \mathrm{cm}^{2}, 3^{\circ}-\mathrm{Z}$, depth at which sample was taken, in meters.

Howej, a więc substancji w decydujaçym stopniu wiqżacych wodę. Zależnosci te maja charakter funkcji liniowych o podanych wyżej wzorach. Wynika stąd praktyczny wniosek, że w przypadku niepełnych badań laboratoryinych próbek gruntu o ustalonym składzie granulometrycznym z dużą dokładnością można ustalić wartości liczbowe granic płynności i plastyczności, a wobec prostoty badań wilgotności naturalnej - w konsekwencji również i stan gruntu.

W dalszej kolejności przeprowadzono zależności pozornych kątów tarcia wewnẹtrznego i kohezji od wilgotności naturalnej w zakresie od 15 do 44%, przy jednoczesnym uwzględnieniu głẹbokości pobrania próbki gruntu. Dia uogólnienia szukanych zależnosci wyliczono średnie war-

Ryc. 4. Zależność granicy płynności od zawartości frakcji iłowej - 1
1 - wykres funkeji wg T. Kanskiego, 2 - wykresy funkeji autora, 3 - wyniki badań laboratoryjnych

Fig. 4. Relationship between liquid limit and clay fraction content - I
1 - graph of the function after T. Kański, 2 - graphs after the present author, 3 - laboratory results.
tosci pozornych kąrów tarcia wewnẹtrznego i kohezji. Obliczone wartości średnie naniesiono na wykres (ryc. 3), uzyskując szereg punktów dajạcych możność wyznaczenia linii ciagłych pierwszego rzedu. Z uzyskanego wykresu można przyjąc, że iłł poznańskie charakteryzują się na ogół kohezia zbliżona do $1,0 \mathrm{~atm}$. Kąty tarcia wewnẹtrznego wykazują zależność od wilgotności naturalnej również w sposób liniowy, orientacyjnie od wartości 20° przy wilgotności 15%, redukują się do 6° przy 44% Wn. Poza tym prżedstawiony wykres pozwala na stwierdzenie, że w granicach prowadzonych wierceń do głẹbokości 30 m nie zachodzi widoczny zwiazzek pomiędzy kątem tarcia wewnętrznego i głębokościạ.

Dla katów tarcia wewnętrznego w zakresie zmienności wilgotności naturalnej od 15% do 44% otrzymano następujące równanie prostej:

$$
\varphi=-0,5 W n+28 \ldots
$$

Uzyskany wzór potwierdza logicznie przewidywana zależność pomiędzy wilgotnością naturalną i katem tarcia wewnẹtrznego, polegająca na zmniejszaniu się ich wartości przy wzroście wilgotności. Zależność ta ma charakter funkcji liniowej, pozwalajacej przy oznaczonej tyiko wilgotności naturalnej iłów poznańskich, na okreslenie ze znaczną dokładnością kątów tarcia wewnętrżnego.

Gliny morenowe wydzielono w zachodniej czéści trasy w odcinku objętym ul. Polną i górną krawẹdzią skarpy wiślanej. Utwory te zalegaja głównie w przystropowel partii podłoża, tworzăc niejednolity pokład tak w poziomym, jak i pionowym rozprzestrzenieniu. Pod wzgledem genetycznym sa one reprezentowane przez dwa zasadnicze typy, mając określoną pozycję stratygraficzna (1). Obydwa typy w. sensie geotechnicznym nie wykazuja żadnych różnic, stąd jako ew. kryterium podziału przyjeto ich barwe. Gliny starsze posiadaja barwee ciemnoszara i szara, a młodsze czerwonobrązową o odcieniu żóttordzawym. Gliny te zgodnie z polska norma PN-54/B-02480 są reprezentowane przez grunty małospoiste 1 sredniospoiste o zawartości frakcji iłowej w przedziałach $5-10 \%$ i $10-20 \%$. Są to więc

Ryc. 5. Zależność granicy plastyczności Lp od zawartošci frakcji Howej 1
___ wykres funkcji wg T. Kańsklego, ….......... wykres funkcji autora, :.......... wyniki badań laboratoryjnych.

Fig. 5. Relationship between plastic limit and clay froction content - 1
graph of the function, after T. Kański, graph of the present author results of laboratory studies.
głównie piaski gliniaste i gliny piaszczyste z lokalnymi wtraceniami grubszego materiału w postaci niewielkich otoczaków i głazików.

Szczegółowe badania laboratoryjne wykonano na stosunkowo niewielkiej liczbie próbek gruntu. W związku z tym ujednolicenie cech dla calego pakietu dokonano w oparciu o wyniki T. Kańskiego (3), przede wszystkim dazzono do ustalenia zależności granic płynności i plastycznosci od składu granulometrycznego (ryc. 4). Stwierdzono, że uzyskane wyniki $L_{y} w$ laboratorium WBS i PTDiL w stosunku do krzywej teoretycznej podanej przez T. Kańskiego wykazuja nieznaczne odchylenia, ksztaltujace się w wysokości $-0,5 \%$ do $+1,25 \%$. Pozwala to na skorygowanie wzoru T. Kańskiego o wartoś $+0,3$, a tym samym dla gilin morenowych wystẹpujacych w ciagu trasy mostowej i sasiedztwie można stosować następujący wzór:

$$
L_{y}=0,05 I^{2}-0,75 I+23,6 \ldots
$$

Analogiczna analize przeprowadzono dla granicy plastyczności. W tym przypadku wartości L_{p} (autora) byly z reguly niższe od wartości teoretycznych (T. Kańskiego), przy czym różnice dochodziły do $0,4 \%$ (ryc. 5). W związu z tym wzór T. Kańskiego ulegnie korekcie w wyrazie wolnym, przybierajac postać:

$$
L_{p}=0,015 I^{2}-0,4 I+13,6 \ldots
$$

Wzory te pozwalaja na każdorazowe, orientacyine ustalenie odpowiednich cech gruntu, o ile znana jest ich wilgotność naturalna i skład granulometryczny. Poza tym możliwość szacunkowego okreslenia w badaniach makroskopowych - zawartości frakcji iłowej - pozwala zupełnie śscisle ustalić stan badanej próbki, przy znanej jedynie wilgotności naturalnej. W następnej kolejności przeanalizowano wyniki kạtów tarcia wewnẹtrznego i kohezji. Ustalenie wartosci liczbowych dokonano w laboratorium WBS i PTDiL na próbkach o naruszonej strukturze. Grunt rozdrobniony poddawano zagegsczeniu w znormalizowanej foremce. Przed przystapieniem do formowania próbki określano uprzednio wartości liczbowe cię̇̇aru objętościowego gruntu. Po uzyskaniu tych wartości, przy równoczesnej znanej objętosci foremki, obliczano wagowa ilość gruntu potrzebną do zageszczenia. Grunt zagęszczono w prasie hydraulicznej przez równomierne wywieranie nacisku na

Ryc. 6. Zależnosé kqta tarcia wewnętrznego od stanu gruntu oraz od zawartości frakcji piaskowej - p
——wykresy funkcji wg T. Kańskiego, ... wyniki badań laborat. autora.

Fig. 6. Dependence of angle of internal friction on the state of soil and on sand fraction content -p
graphs of the function, after T. Kański, results of laboratory studies by the present author.
dolną i górną pówierzchnię walca gruntowego. W konsekwencji tej czynności otrzy mano próbkę sztucznie skomprymowaną o ciężarze objętościówym w stanie rodzimym. Tak przygotowane próbki poddawano badaniom w aparacie trójosiowym. Stosowana metoda jest z cała pewnościa nieścisła, ale zważywszy, że glina morenowa jest gruntem ,,zwałowym" uzyskane wyniki w dostateczny sposób charakteryzują katy tarcia wewnętrznego i kohezji dla potrzeb praktyki budowlanej. Co więcej, wyniki te minimalnie odblegaja od wartości normowych oraz opracowań naukowych (1, 3). Dla potwierdzenia powyższego uzyskane wyniki katów tarcia wewnętrznego i kohezji porównano \mathbf{z} wykresami T. Kańskiego obrazujacymi funkcjonalne zależności kątów tarcia wewnętrznego i kohezji od zawartości frakcji piaskowej i stanu gruntu (ryc. 6).
\mathbf{Z} porównania tego wynika, że wartości katów tarcia wewnętrznego grupuja się wokół poszczególnych prostych, z niewielkim odchyleniem w górẹ lub w dół w granicach -4° do $+3^{\circ}$ dla gruntów o stanie półzwartym, a stanu twardoplastycznego -2° do $+2^{\circ}$. Przy stanie plastycznym i miẹkkoplastycznym różnica jest jeszcze mniejsza, a wartosci kătów tarcia wewnętrznego să stałe, $y=$ constans $=$ $=\mathrm{ca} 6^{\circ}$. Oznaczałoby to, że po przekroczeniu pewnej wilgotnosci w glinach morenowych występuje zanik wplywu zawartości frakcji piaskowej (składu granulometrycznego) na wielkość kąta (3).

Analogiczną paralelẹ przeprowadzono w odniesieniu do kohezjl. T. Kański ustalit, że kohezja w glinach morenowych w zależności od zawartosci frakcji plaskowej i stanu gruntu wykazuje związek nieliniowy. W układzie współrzędnych otrzymano wykresy zbliżone do krzywych siodłowych. Ekstremum tych krzywych występuje przy 46-50\% frakcji piaskowej. Uzyskane wyniki kohezji glin porównano z tymi krzywymi uzyskując daleko idaça zbieżność, co poglądowo obrazuje ryc. 7.

Osady pochodzenia zastoiskowego wystẹpują w zachodniej części trasy w rejonie ulicy Polnej i Marszałkowskiej.

Ryc. 7. Zależność spójności od stanu gruntu oraz od zawartosci frakcji piaskowej - p
——_wykres funkcji wg T. Kańskiego, wyniki badań laborat. autora.

Fig. 7. Dependence of cohesivness on the state of soil and on sand fraction content - p
graph of the function, after T. Kański of author's laboratory studies.

Sq one reprezentowane przez piaski pylaste i ity warwỏwe, barwy szarej, szaropopielatej i popielatej. Ity cechuje tekstura warwowa. Jednakże poszczególne warstewki nie wykazywały w przełomie równoległego warstwowania, przeciwnie byty pofalowane i zaburzone glacitektonicznie. W konsekwencji nie było możliwosci oddzielenia poszczególnych warstewek od siebie, stąd makroskopowo określono te grunty jako iły bądźily pylaste z przewarstwieniami pyłu. W dalszych szczegółowych badaniach potraktowano je jako jednolity kompleks, dla którego dażono ustalić chociażby przybliżone wartości liczbowe właściwosci fi-zyczno-mechanicznych. Na podstawie wyników analizy areometrycznej stwierdzono, że skład granulometryczny iłów warwowych na tle trójkątà Fereta obejmuje zasadniczo pole gliny pylastej i iłu pylastego. Zawartosé frakeji Iłowej kształtuje się w wysokości 26-35\% przy 4-6\% frakcji piaskowej. Wyniki te nalė̇y uznać za miarodajne tym bardziej, że E. Myślińska (5) w-swojej pracy o iłach warwowych podaje bardzo zbliżone wyniki z badań areometrycznych próbek bruzdowych pobranych w kilku miejscowosciach na terenie Mazowsza. Wg tej autorki, w badanych przez nia iłach, zawartość frakcji iłowej wynosi $15,5-45,5 \%$, przy 4-12\% frakcji piaskowej.

W dalszej kolejności ustalono wartości liczbowe granic płynności i plastyczności. Badania te wykonano metodà standardowa, w oparciu o obowiazujace polskie normy. Uzyskane wyniki granic płynnosci i. plastyczności porównano z? badaniami E. Myślińskiej. Wyniki własnych badań odniesiono do teoretycznych wzorow zestawionych przez cytowana autorkẹ, a obrazujazcych zależnoscl granicy plynności od zawartości frakcji iłowej w przedziale od 11 do 82% i dla granicy plastyczności od 32 do 82% (ryc. 8 i 9).

Na podstawie powyższego porównania daje się stwierdzle, że otrzymane wyniki w odniesieniu do prostych funkcjonalnych E. Myślińskiej wykazuja w przypadku granic płynności róznicę dochodząca do $+\mathbf{1 0 \%}$, a przy granicach plastyczności $\pm 0,5 \%$.

Ryc. 8. Zależność granicy płynności Ly frakcji iłowej w przedziale od 4 do 82%
wykres funkcji wg E. Myślińskiej, \qquad wyniki badań
laborat. E. Myślínskiej, $\Delta \Delta$ wyniki badań laborat. autora.
Fig. 8. Dependence of liquid limit, Ly, on clay fraction content, J, in the interval from 4 to 82%
\qquad graph of the function, after E. Myslińska, \qquad results of laboratory studies of E. Myśllińska, $\Delta \Delta$ results of author's laboratory studies.

WNIOSKI

1. Rozpatrywanie uogólnionych właściwości gruntów należy przeprowadzać dla poszczególnych grup genetycznych, a nie dla rodzajów gruntów w sensie normy PN-54/B--02480.
2. Grupy genetyczne w układzie trbjkata Fereta tworza skupienia niezależne od geotechnicznego rodzaju gruntu. Wydaje się celowe przedstawianie graficzne tego rodzaju układów jako załącznika do wyników badań gruntów.
3. Wykonane badania laboratoryjne dla dużego odcinka terenu Warszawy potwierdzily zależnosé między właściwościami gruntu a zawartoscia jego frakcji składowych:
a) liniowe dla iłów i gruntów zastoiskowych (5, 6, 7),
b) drugiego stopnia dla glin morenowych (3).
4. Zależności teoretyczne ujęte w postaci wzorów moga wymagać adaptacji dla konkretnie rozpatrywanego terenu, co w powyższym opracowaniu wykazał autor.
5. Dla iłów plioceńskich z trasy mostowej, ,Łazienkowska" ustalono funkcjonalne zależności korelujące z pracami D. Szyszło; chociaż wykazujace niewielkie odchylenia.
6. Wykresy T. Kańskiego dla kątów tarcia wewnętrznego i kohezji glin morenowych umożliwiaja zaniechanie, a przynajmniej znaczne ograniczenie żmudnych badań laboratoryjnych dla potrzeb praktyki budowlanej. Należy podkreślić dużą zgodność badań praktycznych z wykresami teoretycznymi.
7. Dla łów zastoiskowych zależność ustalona przez E. Myślińska. dla granic płynności wykazuje duże rozbieżnosci (10%), natomiast dla granic plastyçności podany wzór jest zgodny z wynikami badań własnych.

Ryc. 9. Zależność granicy plastyczności Lp od zawartości frakcji iłowej w przedziale 32-82\% I
—_wykres funkcji wg E. Myṣlińskiej, ... wyniki badań laborat. E. Myslińskiej, $\Delta \Delta^{-}$wyniki badań lab. autora.

Fig. 9. Dependence of plastic limit, Lp, on clay fraction content, J, in the interval from 32 to 82%

[^0]8. Należy rozszerzyć kierunek analizy przeprowadzony przez autora dla gruntów trasy mostowej i w dużych tematach ograniczać badania laboratoryine przez stosowanie zależności i wykresów teoretycznych.

LITERATURA

1. Falkiewicz A. - Własnosci fizyczno-mechaniczne glin zwałowych środkowego Mazowsza. Biul. geol. Wydz. Geol. UW, 1962, t. 2.
2. Fortunat W. - Charakterystyczne cechy fizyczne trzeciorzędowych iłów Warszawy, Bydgoszczy i Tarnobrzega. Biul. Inst. Geol., 1960, 163.
3. Kański T. - Własciwości geotechniczne glin morenowych (praca doktorska). Kat. Mech. Gruntów i Fund. Polit. Warsz., 1966.
4. Kowalski W. C., Lipiñska N. - Rodzaje gruntów seril glin zwałowych Warszawy. Prz. geol., 1964, nr 9.
5. My §lińska E. - Wpływ warunków sedymentacji i diagenezy iłów warwowych zlodowacenia środkowopolskiego na obszarze Mazowsza na ich własności inży-niersko-geologiczne. Biul. geol. Wydz. Geol. UW, 1965, t. 7.
6. Należyty W. Z. - Przekrój geologiczny trasy mostowej "Lazienkowska" w Warszawie. Prz. geol., 1972, nr 2.
7. Szyszło D. - Własności fizyczno-mechaniczne frakcji ilastej iłów poznańskich na tle ich litologii. Biul. geol. Wydz. Geol. UW, 1967, t. 9.

In the course of engineering-geological works connected with a certain investment undertaking, i.e., the construction of ,,Lazienkowska" bridge route in Warsaw, a large number of laboratory determinations of physicomechanical soil properties were made. On the whole, about 1,000 samples of soils were taken. About 350 detailed analyses were performed under laboratory conditions and in accordance with the provisions of actual Polish norms, being made of the equipment of the Geotechnical Laboratory of the Warsaw Offices of Land- and Aerial Transport Studies and Designing, produced by the research instrumentation works in Cracow. A vast amount of laboratory determinations enabled to find interdependences between lithology and genesis of soils, on the one hand, and their physico-mechanical parameters on the other hand. It follows from the lithostratigraphical profile obtained (cf. Przeg. geol., No. 2-1972) that 6 basic genetic groups may be distinguished in the soil substratum of the bridge route. These groups may be further divided into lithological subgroups, and these - into elementary units, in accordance with the classification scheme of the Polish Norm PN-54/B-$\mathbf{- 0 2 4 8 0}$. In the present paper, 3 genetic groups of soils, i.e., cohesive clays, boulder clays, and stagnant lake clays are characterized.

PE3 مME

Во время инженерно-геологических изысканий, связанных со строительством новой артерии в Варшаве, был накоплен богатый материал, охватывающий лабораторные определения физико-механических свойств грунтов. В общем было взято около 1000 образцов. Произведено 350 детальных анализов, согласно современным польским нормам, с помощью аппаратуры Завода научной аппаратуры в Кракове, находящейся в оснащении Геотехнической лаборатории Варшавского проектного бюро дорожного и авиационного транспорта. Большое число лабораторных определений дало возможность выявления закономерных связей между литологическим составом и генезисом грунтов, с одной стороны, и физико-механическими свойствами грунтов, с другой.

В составленном литолого-стратиграфическом профиле грунтов, залегающих в основании артерии, различается 6 основных генетических групп грунтов, которые подразделяются на литологические подгруппы, состоящие, в свою очередь, из элементарных типов, соответствующих классификационной схеме польской нормы PN-54/B-02480. В настоящей работе рассматриваются три генетических группьі грунтов: связные глины, валунные глины и озерные илы.

[^0]: graph of the function, after E. Myślińska, results
 of laboratory studies of E. Myślińska, $\Delta \Delta$ results of author's
 \qquad graph of the function, after E. Myślińska, results
 of laboratory studies of E . Myślińska, $\Delta \Delta$ results of author's laboratory studies.

