WYNIKI DOTYCZĄCYSOWYCH BADAŃ SOŁI POTASOWYCH W STREFIE PRZEDSUDECKIEJ

ZAKS HISTORII BADAŃ

Dopiero jednak wyniki wiercen Nowa Sól 1 (1961, przemysł naftowy; 34 metry, 26 makt soli potasowych z 9,4% K2O, stwierdzony na głębokie 900 m) zwróciły uwagę na możliwość występowania w strefie przedsudeckiej koncentracji potasu z znaczeniem przemysłowym (5).

Komunikaty i wzmianki o cechach mineralnych sol potasowych, notatkach w strefie przedsudeckiej w korset niektórych wierszach przemyśla naftowego ujawniają się od 1953 r. (3, 16, 13, 17, 8). Na uwagę zasługują J. Sobczyński (12, 13), w których przedstawiono m.in. wstępny obraz rozprzestrzenienia i budowy poziomu soli potasowych starszych (cyklem Stassfurt-Z2) z okolicy Nowej Soli. Szczególne dane dotyczące budowy i genezy soli potasowych z okolic Nowej Soli zawarte są w opracowaniach M. Podemskiego (10, 11).

Kolejnym ważnym punktem w rozpoznawaniu soli potasowych w strefie przedsudeckiej było natolanie wierceniem Lelechów IG–1 (1968–1968; Instytut Geologiczny) koncentracji potasu o znaczeniu przemysłowym w poziomie soli potasowej w strefie cyklu temu Leine–Z3 (2,5 m o średniej zawartości 11,8% K2O na głębokości nieco poniżej 1000 m).

Do ostatnich prac wartych odnotowania należą badania sejsmiczne wykonane w latach 1969–1970 (głównie na obszarze perykline ZR) przez Program Rozwoju ONZ (UNDP). W wyniku tych prac uzyskano z uchwytów cecholskich rejsów dając się śledź na znacznym odcięcia. Pozwoliło to na dość dobrze odczytanie zmian miąższości utworów cecholskich, ważnego parametru dla poszukiwań złóż soli potasowych (9).

ROZPRZESTRZENIENIE I LITOLOGIA SOŁI POTASOWYCH W STREFIE PRZEDSUDECKIEJ

Pokład Stassfurt K2

Soli potasowej tego pokładu napotkanie zostało w strefie centralnej cyklu temu Stassfurt-Z2 w około 90 otworach wiertniczych, nieręgowane roz- rzuceniem w zachodniej i południowo-zachodniej części przedsudeckiej i na perykline ZR. Ponadto w klipidże- ciu otworach stwierdzono brak tego poziomu. Połud- niowy zasięg omawianego pokładu tyczy yc. 1) przedsta- win dość skomplikowany, charakteryzujący się niewystarczającymi jeszcze udokumentowanymi i wiertnimi. Ogólnie biorąc jest to szereg węglikowych i sza- szych zatok o dość regularnym ułożeniu w kierunku NW–SE. Południowe ich krańce składają się równie dość regularn w kierunku NW–WSE. Seria tych zatok kończy się na wschodzie na wysokości Sulechowa i Nowej Soli. Dalej ku wschodowi pokład Stassfurt K2 pojawia się jedynie w otworach Bren- no 1, Jarocin 1 i śródlądowe w otworze Wachowa 1. Miąższość omawianego poziomu waży się w obszerej przypadkach od 10 cm do około 20 cm, prze- krzywiając w wyjątkowych przypadkach 50 m. Zmiana- ny miąższość wykazują pewną tendencję do asym- metrii, wyrażającej się występowaniem maksymal- nych wartości w SW skrzydłach zatok.

Pokład Stassfurt K2 zbudowany jest z całej serii na przemiany warstw soli kamiennych, soli ka- miennej z sylwmem oraz soli potasowej twardej (n. Hartszal), anhydrytowo-polkhálido. Miąż- szość przemiany warstw waży się od kilkunastu cm do około 1 cm, przy czym niektóre z nich oddziel- one są osto zarysowanymi kontakci. Barwy ich obejmują catę gamę od czerwonej do żółtego. W sztacie tego poziomu pojawia się też niejaki barwa mleczobiała.

Głównym minerałem potasowym jest sylwmin. Jego czerwono na ogół zabarwione krystaly o średnicy 30–60 mm rozlane są bezlądnie w soli kameńskiej lub skupione w warstwach między kilku do kilku kilkunastu cm. Bardzo częstym zjawiskiem jest wypłacie w sztuce przez sól kamienienną (halit) oraz przez starczany.

Sarzany stanowią główną grupę minerałów nie- chłorkowych. Tworzą one najrozmaitsze forma skup- pienia, począwszy od drobnych wypustków, żylek, pa- semek i nieregularnych strzępek, aż do warstewek i ściętkowych przerostów. Minerałem dominującym
Górna strefa potasowa, o miąższach dochodzącej do 12 m, zbudowana jest z soli regularnie warstwowanego soli twardzej, kizetywowej, białej. W składzie mineralnym dominuje sól kamiennej (halit), średnio i grubokrystaliczna, miejscami wielokrystaliczna, o kryształach dochodzących do 1,5 cm. Jasnosiary stylin tworzy wrzeciona, nierregularne przerwy oraz warstwki o grubości 1–4 cm. Ku spadowi ilość stylitu szybko się zmniejsza. Zwiększa się to ilość kizetywy. Tworzącego jego węzły lub przerwy, w warstwach przerwy o grubości od 1 cm do 15 cm. Kizetywy kształta jest w postaci kryształów ksenomorficznych o Ø 0,1–1,0 mm. Obok kizetywy występują zwykle niewielkie ilości kryształów anhidrytu podobnymi z pokroju i wielkością. Obecny tam również polihalt występuje najczęściej w partii soli kamiennej bez stylitu i kizetywy.

W składzie chemicznym dominuje NaCl: 18–91%. Zawartość K₂O waha się od 1 do 16%, MgSO₄ -- od 2 do 49%; zawartość CaSO₄ nie przekracza zwykle 0,5%. Współczynnik bromowy osiąga wartość 0,74–1,2.

Dolna strefa potasowa, o miąższach dochodzącej do 6 m, zbudowana jest z soli kamiennej z przewarstwieniami polihaltu. Sól kamiennej jest jasnoszara, drobno i średniorakrysaliczna, rzadziej grubokrystaliczna. Polihalt występuje w postaci nierozrzedzonych skupień oraz mniej lub bardziej regularnych paseków i przestrzeliwa o grubości do 4 cm. W składzie polihaltu są zwykle półitomorficzne lub granoblastyczne o Ø 0,08–0,14 mm, rzadziej precyzyjne lub wstępowe o rozmiarach 1,0–0,05 mm. W składzie i warstwach polihaltowych występują zwykle relikty anhidrytu.

Zawartość K₂O waha się w granicach 1,0–4,5%; MgSO₄ -- 2,7–4,6%; CaSO₄ -- 3,0–5,0%; NaCl -- 7–90%. Współczynnik bromowy osiąga wartości w granicach 0,19–0,23.

UWAGI O GENEZIE SOŁI POTASOWYCH W STREFIE PRZEDSUDECKIEJ

Badania utworów cechacyjskich w zachodniej części strefy przedsudeckiej, przeprowadzone szczegółowo na obszarze podłożem między Zieloną Górą, Nową Sołą i Kozuchowem (11) wykazały, że zasada, kształt, rolę w składnicy tych utworów odegrały w postaci geologiczną oraz cechacyjskie ruchy epijewierskie. Oznaczony obszar w strefie odeskciarstwa wąskich, cechowało morfologiczne zróżnicowanie dna basenu cechacyjskiego o wyraźnych warstwach przestawionych w orientacji nierównolatkowej, co wywarło pewne wpływy na składnictwo kształt, wielkość utworów cechacyjskich.

Wpływ morfologii dna basenu na składnictwo chlorwatkowych utworów chemicznych jest szczególnie duży. Zagraniczne węglany i stanowiska wapna zbierają się bowiem w lokalnych zagłębianiach i tam osadzają się w sąsiedztwie miąższości soli kamiennej. Podobnie po- wstają soły potasowo-magnesowe, wytworzone w stopniu wapniowym oraz w kwaśnych warunkach. W przypadku pokładów soli potasowych, w składzie przedsudeckiej, co wynika z normy, podstawionych w tym miejscu na wzór podłużny, na obszarach ogólnej miąższości podzielających je soli kamiennej.

Zależność taką można w dużym stopniu zaobserwować w przypadku pokładów soli potasowych, występujących w strefie przedsudeckiej, co wskazuje na normalną, składnicy ity genezę. W przypadku pokładów Stassfurt K2 zwraca jednak uwagę dość wyraźna asymetria miąższości poszczególnych, których a fragmentach, a przedstawione w strefie wskazują na wzrost zawartości K₂O związaną z tym asymetrycznym wzrostem miąższości. Dotychczasowe badania doprowadziły do wniosku, że jest to wynik erozji środkiemwałowej i

Pokład Ronneberg [K3]

Poziom soli potasowych, uważany za odpowiednik niemieckiego pokładu Ronneberg [K3], nawięśerował się w środkowej części strefy solnej cyklu Leine–Z3 w koło 20 otworach (ryc. 2). W klimacie w średniodługich odcinkach stwierdzono brak tego poziomu. Poziom ten występuje w pasie o szerokości około 10 km, ulotnionym w kierunku NW–SSE, od okolic Nowej Soli na południu do Sulechowa na północy. Dalszy ciąg tego poziomu potasowego nie jest bliżej znany.

Koncentracje potasowe występują w dwóch strefach rozdzielonych kilkunastometrową partią soli kamiennej. W strefie górnjej, w połowie dolnej części zauważa się, że strefa występuje w peryferyjnych partiach pola potasowego, strefa górna, główna, w partiach centralnych.

Ryc. 1. Rozmieszczanie i miąższość pokładu Stassfurt K2 na terenie przedsudeckiego strefy 1 — otwory wiertnicze, w których napotkano pokład Stassfurt K2; 2 — otwory wiertnicze, w których stwierdzono brak pokładu Stassfurt K3; 3 — otwory wiertnicze, w których stwierdzono brak soli cyklu solnomoroficznego Stassfurt–Z3; 4 — linia południowego zagłębia soli solnej cyklu solnomoroficznego Stassfurt–Z3; 5 — linia południowego zagłębia pokładu Stassfurt K2; 6 — zasięg miąższości pokładu Stassfurt K2 na terenie przedsudeckiego strefy 1 — obszary strefy solnej cyklu solnomoroficznego Stassfurt–Z3.
Ryc. 2. Rozmieszczenie i miastoisko pokładu Ronnenberg KJRo w strefie przedsudeckiej.

1 - otwory wiertnicze, w których napotkano pokład Ronnenberg KJRo; 2 - otwory wiertnicze, w których stwierdzono brak pokładu Ronnenberg KJRo w solach cyklu tektonu Leine-Z2; 3 - otwory wiertnicze, w których stwierdzono brak serii solnej cyklu tektu Leine-Z2; 4 - uszkodzona linia południowego zasięgu serii solnej cyklu tekstu Leine-Z2; 5 - linia północnego zasięgu pokładu Ronnenberg KJRo; 6 - izolinia miastoskó pokładu Ronnenberg KJRo (w m); 7 - izolinia -1200 m załamania stroju serii solnej cyklu tekstu Leine-Z2.

Fig. 2. Distribution and thickness of Ronnenberg KJRo horizon in the Fore-Studetic region.

1 - boreholes penetrating Ronnenberg KJRo horizon, 2 - boreholes showing the lack of Ronnenberg KJRo horizon in Leine-Z3 cyclotheme salts, 3 - boreholes showing the lack of Leine-Z3 cyclotheme salts series, 4 - fault, 5 - southern limits of Leine-Z3 cyclotheme salt series, 6 - southern limits of Ronnenberg KJRo horizon, 7 - isopach of Ronnenberg KJRo horizon (in meters), 8 - -1300 m isoline of top surface of Leine-Z3 cyclotheme salt series.

zarówno z nią descendentnej redepozycji utworów potasońskich. Innymi słowami można mówić, że po okre- sie pierwotnej sedimentacji soli potasoowej pokładu Shastari K1 uległy częściowemu wypłukaniu, prawie wszystkim na reaktywowanych wyniesionych ele- mentach morfologicznych i ponownemu wytrzęsieniu w obszarach przylegających do tych elementów. Podobnej częściowej erozji uległy także soli potasoowej pokładu Ronnenberg KJRo (górna strefa potasońska), jednakże w tym przypadku procesy erozyjne i descen- dente związane były na tak dużą skalę, że nie doszło już do redepozycji samych soli potasoowych, lecz po- wstały grubie pokłady soli kambiennej o podwyzszo- nej częściowym zawartości potasu.

Zagadnieniem do wyjaśnienia jest również geneza paragenez mineralnych. Obydwa poziomy zbudowane są z soli twardych (halit + sylwin + kłerty, anhy- dryt, polihalit), częściowo z soli sylwinowych (halit + sylwin). Przez dłuższy czas przyjmowano, że soli
te powstały na drodze wtórnych przemian z soli karnalitowych lub kainitowych. Ostatnio badania M. G. Waliasko (14) wykazały, że sylwinit i sole w twardym składzie mogą w pewnych warunkach powstawać również jako sole pierwotne.

W przypadku soli twardych i sywilnitowych pokładu Stassfurt K2 ze strefy przedsudeckiej przypuszcza się, że są one solami pierwotnymi. Przemania za tym m.in. wielkość współczynnika bromowego charakterystyczna dla pierwotnego sylwinitu (0,4–0,6 wg M. G. Waliasko). Poglądy ten nie wyklucza wpływu wtórnych przemian na obecną skład chemiczny tego poziomu i jego paragenesze mineralne. Chodzi tu przede wszystkim o bardzo wyraźne miejscami wzbogacenia w siarczan wapnia oraz szereg przemian mineralogicznych typu wypierania jednych mineralów przez drugie (np. polihalizacja anhydrutu). Jeśli chodzi o sole twarda pokładu Ronnenberg K3Ro (górna strefa potasowa), to wydaje się, że jest to paragenaza wtórna, powstała z rozpadu soli karnalitowych. Na pierwotną obecność karnalitu w osadzie wskazuje, zgodnie z poglądami M. G. Waliasko, wysoka wartość współczynnika bromowego, dochodząca do 1,2.

Osobny problem stanowi geneza dolnej strefy potasowej cyklu pośredniego Leine-23, to znaczy soli kamiennych z cienkimi przewarstwieniami polihaliutu. Wydaje się, że są to wtóre koncentracje potasu, doprowadzonego z którego są dwu poprzednio omówionych poziomów. Pod wpływem potasu oraz współbieżnie migrujących związków magnezu pierwotne przewartwienia anhydrutowe przeobrażone zostały w polihaliut. Skalę tej migracji i związanych z nią przeobrażeń trudno w tej chwili ocenić ze względu na brak wystarczającej ilości danych.

PERSPEKTYWY POSZUKIWANIA ZŁOŻ SOLI POTASOWYCH W STREFIE PRZEDSUDECKIEJ

Dotychczas brak jest polskich kryteriów bilansowych dla soli twardych i sywilnitowych występujących w strefie przedsudeckiej. Zastępczo przyjmuje się więc kryteria stosowane dla takich soli w NRD, tzn. głębokość graniczną 1200 m i minimalną zawartość K₂O 10%. Dla określenia obszarów perspektywicznych dla poszukiwań złóż soli potasowych w omawianej strefie niesie za sobą na mapy zasięgów poszczególnych poziomów potasowo-środkowych 1200 m zalegania stropu odpowiednich serii solnych (ryc. 1, 2). Zaznacza się, że wskazują wprawdzie dokładnie głębokość zalegania soli potasowych na głębokości 1200 m, jednakże z wystarczającą dokładnością wyznaczają obszary perspektywiczne. Linia ta na mapie pokładu Stassfurt K2 odcina południowo-krańcowy kilku zatok soli potasowych o łącznej powierzchni około 200 km². Jeśli chodzi o pokład Ronnenberg K3Ro, to obszar położony na głębokości dostępnej górniczo, stanowiący również południowy krańce zatoki potasowo-środkowej, posiada powierzchnię około 100 km².

Większa część przetwarzanych dotychczas profili sol potasowych z pokładu Stassfurt K2 posiada poziomową zawartość potasu. Średnia zawartość K₂O w poszczególnych profilach wahała się w granicach 2–6%, osiągając maksymalnie 9%. Krzywe promienio-

Siatka blaskowatych krystalów soli w kontakcie z żylkowatym przestartem anhydrutowym z solą kamienią. Czeshyst, poziom soli kamiennej młodszej, o: Rybak 1, pow. ok. 130 X, nikiło X.

Fot. M. Podemski i J. Modrzewiowska.
wania gamma ze straφ o większych mięśniach poziomu potasonożnego wskazują na znacznie większą zawartość potasu w solach z tych obszarów. Potwierdzają to też wyniki badań m.in. próbek punktowych z otworu Wększa 2 (wykonanych przez laboratorium kopalń soil w Kłodawie na zlecenie PPN w Pile), które wykazały występowanie w tym otworze koncentracji potasu w wysokości przekraczającej 16% K₂O i dochodzącej miejscami do 22% K₂O. Największe możliwości napotkania koncentracji potasu o znaczeniu przemysłowym w pokładzie Stassfurt K2 istnieją zatem na obszarach o zwiększonej mięśniach tego pokładu.

Jeśli chodzi o pokład Ronnenberg K3Ro, to bilansowe koncentracje potasu napotkane dotychczas w otworze Lelechów IG-1. Zadaniem najbliższ będzie kontynuowanie tego bilansowego obszaru. Poza tym podobne możliwości istnieją na drugim wyjściu oznaczenia pokładu, położonym na wschód od miejscowośc Nowa Sól.

Na zakończenie należy stwierdzić, że obszary o bilansowych koncentracjach potasu oraz obszary perspektywiczne dla ich poszukiwań będą mogły być w przyszłości znacznie powiększone w związku z niewątpliwym, jak się wydaje, opracowaniem opalczym metod eksploatacji soli potasowych w otworach wiertniczych do głębokości przynajmniej 1500–1800 m.

LITERATURA

SUMMARY

Two horizons of potassium salts, correlatable with German Stassfurt K2 and Ronnenberg K3Ro horizons, occur in Zechstein section of the Fore-Sudetic region. The Stassfurt K2 horizon comprises alternations of red-coloured rock salt, rock salt with sybrine, and hard anhydrite-polyhalite salt layers. Potassium content is usually lower than 10% K₂O, increasing only in places of increased thickness of this horizon.

The Ronnenberg K3Ro horizon comprises light-gray hard kizerite salts with K₂O content up to 16 per cent. In places, about a dozen meters below this horizon, a series of rock salt with thin polyhalite intercalations occurs.

The paper also presents current views on the origin of the potassium salts and on the possibilities of occurrence of potassium salt deposits of industrial importance.

РЕЗЮМЕ

В цехтейновых отложениях Председацкой зоны представлены два горизонта калитных солей, которые коррелируются с пластами Штассфурт К2 и Ронненберг К3Ro в Германии. Пласт Штассфурт К2 сложен чередующимися красноцветными слоями каменной соли, сильвиниево-твёрдой ангиридит-полигалитовой солью. Содержание калия составляет в среднем до 10% K₂O. Возрастание содержаний калия наблюдается лишь в местах повышения мощности пласта. Пласт Ронненберг К3Ro состоит из светлосерых твёрдых кислородных солей с содержанием K₂O до 16%. Местами, несколькими метрами ниже этих солей, залегают каменные соли с тонкими прослойками полигалита.

В статье представлены также взгляды на происхождение описанных калитных солей и рассмотрены направления поисков промышленных концентраций калия.