ANIZOTROPIA PRZEPUSZCZALNOŚCI GÓRNOKREDOWYCH PIASKOWCÓW PROGU RADKOWA (SUDETY ŚRODKOWE)

UKD 552.513.551.763.3:556.332.4:539.22:552.122(438-14:234.57-191.2)

W celu uzyskania odpowiedzi na pytanie, jaki jest wpływ cech strukturalnych piaskowców na ich przepuszczalność, autor przeprowadził badania w wybranym profilu środkowych piaskowców ciosowych Gór Stołowych (19). Badania te wykazały, że przepuszczalność piaskowców, jako stosunkowo łatwa do mierzenia cecha tensorowa, może być przydatna dla rekonstrukcji sedymentologicznych, a w szczególności przy odtwarzaniu sposobu i kierunku paleotransportu.

Prace terenowe i laboratoryjne wykonano w ramach programów badawczych Zakładu Geologii Ogólnej i Zakładu Hydrogeologii Uniwersytetu Wrocławskiego, pod kierunkiem T. Jerzykiewicza.

ANIZOTROPIA PRZEPUSZCZALNOŚCI UTWORÓW OSADOWYCH – PRZEGLĄD BADAŃ

Badania nad anizotropią przepuszczalności osadów porowatych i warstwowanych stanowią niewielki ułamek ogółu prac poświęconych przepuszczalności utworów tego typu. Już pierwsze badania tego zjawiska wykazały, że przepuszczalność skał osadowych w kierunku prostopadłym do warstwowania jest z reguły mniejsza niż w kierunkach równoległych (2, 3, 13, 15, 17). Zarówno te pierwsze jak i następne eksperymenty wykazały ponadto, że również w kierunkach równoległych do warstwowania przepuszczalność się zmienia (3, 4, 11, 12, 17).

Pierwsze publikowane dane dotyczące relacji między strukturą wewnętrzną osadu a jego przepuszczalnością, pochodzą od C.J. Griffithsa i jego uczniów (5, 7, 8). P.E. Potter i R.F. Mast (14) badali zależność między warstwowaniem przekątnym i orientacją ziarn, a przepuszczalnością kierunkową w piaskowcach stwierdzając, że przepuszczalność jest największa zgodnie z zapadem lamin i lineacją ziarn piaskowca.

Ostatnio badaniami anizotropii przepuszczalności objęto osady konkretnych środowisk sedymentacyjnych (6, 16). Z badań W.A. Pryora (16) wynika, że maksymalna przepuszczalność w odsypach rzecznych jest zgodna z generalnym kierunkiem przepływu rzeki. W osadach plażowych natomiast, przepuszczalność jest największa prostopadle do wydłużenia tych osadów, a więc prostopadle do linii brzegowej.

Autor tego artykułu stwierdził eksperymentalnie wyraźną zgodność kierunku największej przepuszczalności poziomej osadu piaszczystego z kierunku transportu sedymentacyjnego (20). Również próba wyjaśnienia przyczyn anizotropii przepływu wody w utworach węglanowych tzw. kredy opolskiej, potwierdziła związek tego zjawiska z procesem sedymentacji (21).

PIASKOWCE PROGU RADKOWA

Nazwą "próg Radkowa" określa się północną krawędź Gór Stołowych, częściowo o charakterze ściany skalnej, wzdłuż której odsłaniają się środkowe piaskowce ciosowe. Miąższość piaskowców progu Radkowa jest zmienna i sięga 70 m. Są to średnio- i gruboziarniste subarkozy kwarcowo-skaleniowe o spoiwie ilasto-krzemionkowym, z reguły dobrze wysortowane (19). Piaskowce te są zaliczane do poziomu *Inoceramus lamarcki* (9).

Występujące w obrębie piaskowców progu Radkowa facje strukturalne żostały szczegółowo opisane i w znacznej mierze zinterpretowane (10, 22, 23). Do badań przepuszczalności wybrano 3 odmiany (facje) strukturalne piaskowców: piaskowce warstwowane przekątnie w wielkiej skali, piaskowce warstwowane przekątnie w dużej skali oraz piaskowce niewarstwowane*.

Pierwsza odmiana, która występuje w srodkowej części profilu piaskowców progu Radkowa, jest osadem progradującego w kierunku SSW systemu rozległych, szelfowych form akumulacyjnych – tarasów akumulacyjnych. Z cech teksturalnych i strukturalnych tych piaskowców wynika, że dominującym procesem depozycji osadu w trakcie ich tworzenia się, były kolizyjne spływy ziarnowe (ang. grain flows) na powierzchniach skłonu tarasów akumulacyjnych.

Druga odmiana występuje głównie w górnej części profilu piaskowców i jest osadem prądowych form dna – diun i riplemarków. Facja ta wypełnia rozległe rozmycia i kanały, a kierunki nachylenia przekątnego warstwowania w jej obrębie wskazują na południowy kierunek paleoprzepływu.

Trzecią odmianą są występujące nad piaskowcami progu Radkowa i oddzielone od nich wapieniami i wapnistymi mułowcami tzw. piaskowce międzyplenerskie. Te niewarstwowane piaskowce, drobnoziarniste w części spągowej i zlepieńcowate w stropie, tworzą na obszarze Gór Stołowych litosom, który w części wschodniej (Batorów) stanowi ciągłą kontynuację profilu środkowych piaskowców ciosowych, natomiast ku zachodowi (Pasterka) stopniowo wyklinowuje się w obrębie utworów mułowcowych. Jego geometria oraz cechy strukturalne przemawiają za tym, że tworzą go osady szelfowego nasypu piaszczystego (ang. sand bar), który rozwijał się w warunkach regionalnego transportu materiału w kierunku zachodnim (10).

OPRÓBOWANIE I POMIARY PRZEPUSZCZALNOŚCI KIERUNKOWEJ

Z niezwietrzałych i niespękanych partii skalnych pobrano zorientowane próbki, z których następnie wycięto sześciany o krawędziach do 7 cm "bolki zostały pobrane w miejscach oddalonych nie więcej niż 100 m od linii profilowej, przechodzącej przez środek kamieniołomu w Radkowie (ryc. 1).

Próbki orientowano w stosunku do powierzchni warstwowania w przypadku piaskowców warstwowanych przekątnie w wielkiej skali (1-8) oraz w stosunku do kierunków geograficznych w przypadku piaskowców warstwowanych

^{*} Wytypowane do eksperymentu odmiany piaskowca odpowiadają wydzielonym przez autora facjom strukturalnym A_1 i B_3 , w obrębie piaskowców progu Radkowa oraz piaskowcom międzyplenerskim (10, 22, 23).

Ryc. 1. Schemat opróbowania i przepuszczalności kierunkowej piaskowców w rejonie progu Radkowa

1 – piaskowce warstwowane przekątnie w wielkiej skali, 2 – piaskowce warstwowane przekątnie w dużej skali, 3 – piaskowce niewarstwowane, 4 – mułowce, 5 – wapienie, 6 – osady górnej kredy

Fig. 1. Scheme of sampling and directional permeability of Radków Bluff sandstones

 1 - giant-scale cross-bedded sandstones, 2 - large-scale crossbeded sandstones, 3 - massive sandstones, 4 - mudstones, 5 limestones. 6 - Upper Cretaceous deposits, Kn - parameter of directional permeability

przekątnie w dużej skali (9, 10) i piaskowców międzyplenerskich (11-15, ryc. 2).

Pomiary przepuszczalności wykonano za pomocą układu pomiarowego stosowanego w górnictwie, przystosowanego do próbek sześciennych (ryc. 3). Również wzór obliczeniowy dostosowano do nowej geometrii próbek, wprowadzając zmiany w wyrażeniu na powierzchnię przekroju poprzecznego próbki. Zmodyfikowany wzór obliczeniowy jest następujący:

$$K = 35\,600\,\frac{A}{l\cdot t}\,\ln\,\frac{x}{y}$$

gdzie: K – współczynnik przepuszczalności, mdcy, l – długość próbki, cm

- x, y górny i dolny poziom wody w biurecie, cm
 - A powierzchnia przekroju poprzecznego biurety, cm²,
 - t czas opadania wody w biurecie z poziomu \dot{x} do poziomu y, s.

Pomiar przepuszczalności polegał na mierzeniu wartości t przy znanych parametrach A, x, y, l. Pomiary wykonano w każdym kierunku trzykrotnie dla następujących wartości powyższych parametrów:

pointar pierwszy		
$-A_1 = 1,13 \text{ cm}^2$	$x_1 = 20 \mathrm{cm}$	$y_1 = 10 {\rm cm}$
pomiar drugi		
$-A_2 = 18,86 \text{ cm}^2$	$x_2 = 6 \text{ cm}$	$y_2 = 5 \mathrm{cm},$
pomiar trzeci		
	-	

 $-A_3 = 18,86 \text{ cm}^2$ $x_3 = 5 \text{ cm}$ $y_3 = 4 \text{ cm}.$ Po przeliczeniu wyników pomiarów otrzymano wartości współczynników przepuszczalności kierunkowej ($\overline{K_n}$) każdej z próbek. Wartości te pozwoliły następnie wyznaczyć wskaźniki anizotropii przepuszczalności (ηK) oraz współczynnik przepuszczalności przeciętnej (\overline{K}) dla poszczególnych próbek (18, 22). Ponadto, obliczono średnie wartości wymienionych wyżej parametrów dla każdej z opróbowanych odmian (facji) strukturalnych piaskowców.

Ryc. 2. Sposób orientowania próbek w obrębie poszczególnych facji strukturalnych

Fig. 2. Orientation of samples within particular structural sand-facies

Ryc. 3. Permeametr przystosowany do próbek sześciennych

1 – próbka, 2 – uszczelka gumowa, 3 – parafina, 4 – podkładka metalowa

Fig. 3. Permeameter adapted to cubic samples

1 - sample, 2 - rubber washer, 3 - paraffin, 4 - metal support

PODSUMOWANIE WYNIKÓW EKSPERYMENTU

Wyznaczone parametry przepuszczalności (tab.) wskazują na istotne różnice przepuszczalności kierunkowej badanych piaskowców. Różnice te występują tak w obrębie poszczególnych prób, jak i między próbami. W pierwszym przypadku określają one typ anizotropii przepuszczalności (typ ηK), który został przedstawiony w tabeli jako parametr jakościowy. Jego notacja jest następująca: w liczniku – symbole kierunków największej przepuszczalności, w mianowniku natomiast, symbol kierunku przepuszczalności najmniejszej (20).

W obrębie piaskowców warstwowanych przekątnie w wielkiej skali przeważa typ anizotropii przepuszczalności a⁻, b⁻/c⁻. Dwie próbki pobrane w piaskowcach warstwowanych przekątnie w dużej skali wykazały anizotropię typu S, N(D)/G, natomiast w piaskowcach międzyplenerskich przeważa anizotropia typu G, D/W.

Najwyższą przeciętną przepuszczalnością charakteryzują się piaskowce warstwowane przekątnie w wielkiej skali ($\overline{K} = 10,32$ dcy). Przeciętna przepuszczalność piaskowców międzyplenerskich wynosi średnio 7,4 dcy, natomiast piaskowców warstwowanych przekątnie w dużej skali – 4,88 dcy. Parametry przepuszczalności piaskowców progu Radkowa

PROBA	RZĘDNA	WSPOLCZYNNIK PRZEPUSZCZALNOŚCI KIERUNKOWEJ - Kn.dcy					ĸ	γK	typŋK	
nr	m npm	a ⁺ N	Р+ Е	c ⁺ G	a S	5 W	c D	dcy	%	
1	621	18,61	12,27	13,77	26,69	2387	15,13	18,47	54	a. 5/b+
2	623	9,92	8,71	5,62	11,54	9,46	5,66	849	51	a, at/c+
3	626	35,35	19,17	21,37	41,24	28,47	3622	3030	54	at c=/bt
4	632	3,35	5,70	3,68	4,86	10,95	685	5,90	70	b, c/a ⁺
5	635	4,86	12,17	3,36	4,78	6,25	4,10	5,92	72	5,5/5+
6	637	4,85	7,82	8,58	6,02	8,74	5,75	696	44	b, c*/a*
7	644	4;10	4,55	3,56	4,13	3,63	3,19	3,86	30	b, a/c
8	646	2,88	2,87	2,41	3,10	-	2,47	275	20	a, a / c +
PARAMETRY PRZEPUSZCZALNOŚCI PIASKOWCÓW WARSTWOWANYCH PRZEKĄTNIE W WIELKIEJ SK.						10,32	50	a, b/c		
9	655	5,16	3,19	3,14	6,74	5,04	4,35	4,60	53	S,N/G
10	660	5,59	4,91	3,09	6,25	5,24	3,84	5,15	51	S,D/G
PARAMETRY PRZEPUSZCZALNOŚCI PIĄSKOWCÓW WARSTWOWANYCH PRZEKĄTNIE W DUŻEJ SKALI						4,88	52	S(ND)/G		
11	698	12,24	12,97	28,50	13,80	10,99	24,09	17,10	71	G,D/W
12	700	3,92	3,50	5,56	3,93	350	5,00	4,24	37	G,D/(WE)
13	703	5,84	5,10	3,13	6,29	5,66	5,77	5,30	50	S,N/G
14	706	3,78	3,30	5,44	3,75	3,30	5,03	4,10	39	GD/WE
15	708	0,39	6,87	5,61	6,12	6,92	5,50	6,24	24	E,W/D
PARAMETRY PRZEPUSZCZALNOŚCI PIASKOWCÓW MIĘDZYPLENERSKICH							7,40	44	G,D/W	

Najwyższe wartości wskaźnika anizotropii przepuszczalności otrzymano dla piaskowców warstwowanych przekątnie w wielkiej skali (przeciętnie 52%), nieco mniejsze dla piaskowców warstwowanych przekątnie w dużej skali (przeciętnie 50%), natomiast najniższe dla piaskowców międzyplenerskich (przeciętnie 44%). Otrzymane wyniki w dużym stopniu potwierdzają hipotezę o zgodności kierunku największej przepuszczalności badanych piaskowców z kierunkami transportu sedymentacyjnego.

W przypadku piaskowców warstwowanych przekątnie w wielkiej skali kierunek maksymalnej przepuszczalności a⁻ odpowiada przepływowi wody w kierunku przeciwnym do nachylenia powierzchni depozycji. Ponieważ oddziaływania hydromechaniczne w układzie ziarna-ośrodekpowierzchnia dna (w przypadku przepuszczalności ziarna i spoiwo-ośrodek) są względne, w zależności od przyjętego układu odniesienia, kierunek ten (a⁻) odpowiada ruchowi ziarn w dół stoku. Potwierdza to interpretację, w myśl której depozycja osadu zachodziła z kolizyjnych spływów ziarnowych, jakkolwiek kierunek c⁻ najmniejszej przepuszczalności osadu sugeruje dużą rolę suspensji w trakcie transportu. W zasadzie, nie odpowiada to powszechnie panującym poglądom na temat mechanizmu kolizyjnych spływów ziarnowych (1). Duża przepuszczalność w kierunku b⁻ natomiast, potwierdza regionalny kierunek paleotransportu, wynikający z przesłanek sedymentologicznych (10, 22, 23).

W przypadku piaskowców warstwowanych przekątnie w dużej skali, zgodność kierunku ich największej przepuszczalności z kierunkiem nachylenia warstw jest również naturalną konsekwencją sposobu transportu i depozycji materiału osadowego. Jednak w odróżnieniu od pozostałych dwu facji, anizotropia przepuszczalności ma tutaj charakter strukturalny (19), gdyż wyraźnie nawiązuje do układu przestrzennego stref drenażowych związanych z warstwowaniem osadu.

Piaskowce międzyplenerskie wykazują duże ujednolicenie przepuszczalności w płaszczyźnie poziomej, przy wyraźnie większej przepuszczalności w kierunku pionowym. Wydaje się, że ten typ przepuszczalności anizotropii jest efektem trzech procesów: sedymentacji materiału osadowego z zawiesiny, regionalnego paleoprzepływu w kierunku zachodnim oraz intensywnej biogenicznej homogenizacji osadu.

Należy podkreślić, że wykonany eksperyment wymagał założeń, które w znacznym stopniu upraszczają zagadnienie. W rzeczywistości nie wiadomo czy, i w jakim zakresie pomiary przepuszczalności ośrodków porowatych z zastosowaniem gazu i cieczy są porównywalne. Jaki jest wpływ diagenezy i lityfikacji osadu na zmiany jego własności anizotropowych? Są to tylko niektóre pytania, na jakie trzeba będzie odpowiedzieć w trakcie dalszych badań nad anizotropią przepuszczalności osadów i skał osadowych.

LITERATURA

- Carter R.M. A discussion and classification of subaqueous mass transport with particular application to grain flow, slurry flow and fluxoturbidites. Earth Sci. Rev. 1975 vol. 11.
- Dodge C.F., Holler D.P., Meyer R.L. Reservoir heterogenities of some Cretaceous sandstones. Am. Assoc. Petrol. Geologists Bull. 1971 vol. 55.
- 3. Fettke C.R. The Bradford oil field: Pennsylvania Geol. Surv. Bull. 1938 M-21.
- Fondeur C. Etude petrographic de tailee d'un gres a structure en feuillets. Rev. Inst. Francais Petrole. 1964 nr 19.
- Griffiths J.C. Directional permeability and dimensional orientation in the Bradford sand. Pennsylvaniv Sta. Coll. Min. Ind. Expt. Sta. Bull. 1949 nr 54.
- Hewitt C.H., Morgan J.T. The Fry in situ combustion test-reservoir characteristics. J. Petr. Technology 1965 vol. 17.
- Hutta J.J. Relation of dimensional orientation of quartz grains to directional permeability in sandstones. Praca dypl. Pennsylvania Sta. Univ. Coll. Min. Ind. 1956.
- Hutta J.J., Griffiths J.C. Directional permeability of sandstone: A test of techniques. Pennsylvania Sta. Coll. Min. Ind. Expt. Sta. Bull. 1955 nr 64.
- 9. Jerzykiewicz T. Old paleontological evidence of the stratigraphic position of the youngest Upper Cretaceous sandstones (Góry Stołowe, Middle Sudetes). Bull. Acad. Pol. Sci. 1969 vol. 1.
- 10. Jerzykiewicz T., Wojewoda J. Gigantic foresets infilling tectonically controlled scours in the shelf floor: an example from the Bohemian Cretaceous Basin. Abstrakt, Research Symposium: Sedimentology of shelf sands and sandstones, Calgary 1984.
- Johnson W.E., Breston J.N. Directional permeability on sandstones from varoius states. Prod. Month. 1951 vol. 15.
- Johnson W.E., Hughes R.V. Directional permeability measurements and their significance. Pennsylvania Sta. Coll. Min. Ind. Expt. Sta. Bull. 1948 nr 52.
- K i n g F.H. Principles and conditions of the movements of ground water. U.S. Geol. Surv. Ann. Rep. 1899 nr 19.
- Potter P.E., Mast R.F. Sedimentary structures, sand-shape fabrics, and permeability, pt. 2. Journ. Geology 1963 vol. 71.
- Pressler E.D. Geology and occurrence of oil in Florida. Am. Ass. Petrol. Geol. Bull. 1947 vol. 31.
- Pryor W.A. Permeability-porosity and variations in some Holocen sand bodies. Am. Ass. Petrol. Geol. Bull. 1973 vol. 57.
- Rühl W., Schmid C. Über das Verhältnis der vertikalen zur horizontalen absoluten Permeabilität von Sandsteinen (mit Lagerstättenbeispielen aus dem Gifhorner Trog). Geol. Jahrbuch 1957 vol. 74.
- Wieczysty A. Hydrogeologia inżynierska. PWN 1970.
- 19. W o j e w o d a J. Wpływ cech sedymentologicznych na przepuszczalność w piaskowcach turonu Gór Sto-

łowych. Praca magisterska. Archiwum Inst. Nauk Geol., Uniwersytetu Wrocławskiego 1981.

- W o j e w o d a J. Teksturalna anizotropia filtracji w niezdiagenezowanym osadzie piaszczystym. Prz. Geol. 1982 nr 9.
- 21. W o j e w o d a J. Anizotropia przepływu wody w skałach węglanowych z okolić Opola – próba wyjaśnienia. Materiały II Ogólnop. Symp. nt. "Współczesne problemy hydrogeologii regionalnej, Lądek Zdr. 13– 16.X.1982". 1983.
- W o j e w o d a J. Warunki sedymentacji piaskowców progu Radkowa (górna kreda). Materiały Konf. Sedym. Radków 27–29.IV.1984.
- 23. W o j e w o d a J. Asocjacje facjalne aktywnego tektonicznie szelfu na przykładzie piaskowców progu Radkowa (niecka śródsudecka). Geologia Sudetica. Praca w druku.

SUMMARY

Directional permeability of Upper Cretaceous sandstones of the Radków Bluff (Intrasudetic Basin) was measured using gas-permeameter. Two structural facies of these sediments (giant-scale cross-bedded sdts: sample 1 to 8, and large-scale cross-beddes sdts: samples 9 and 10, reveal a^- , b^-/c^- and S, N(D)/G type of permeability anisotropy, respectively. Vectors of the maximum permeability correspond to the syndepositional paleoflow direction. Non-bedded (massive) sandstones (samples 11 to 15) show G, D/W type of permeability anisotropy, presumably in result of strong bioturbation.

РЕЗЮМЕ

При помощи газового пермеаметра было проведено измерение направленной проницаемости верхнемеловых песчаников порога Радкова (межсудетская мульда). Две структурные модификации — песчаники диагонально напластованные в очень крупном масштабе (образцы 1—8) и песчаники диагонально напластованные в большом масштабе (образцы 9 и 10) выказали тип анизотории проницаемости соответственно а-, b-, c- и S, N(D)/G. Направление самой большой их проницаемости соответствует направлению седиментационного транспорта. Песчаники плоско лежащие, не имеющие налластования выказали тип анизотропии проницаемости G, D/W, который вероятно вытекает из сильной биотурбации осадка.