The Tethyan zone in the geotectonic context of the Pannonian–Carpathian system

Dumitru Stanica¹

¹Geological Institute of Romania, 1 Caransebes, Ro-78 344, Bucharest, Romania

Magnetotelluric results obtained along the two profiles crossing the Eastern part of the Pannonian Basin, southward of the Apuseni Mountains, the Transylvanian Basin and the flexure zone of the South Carpathians, are presented. The paper points out the vertical development of the Dacides, Transylvanides and their sedimentary cover by means of the resistivity contrast limits and supplies information regarding the transition zone from the lower crust to the upper mantle (18–24 km for the Inner Dacides and 28–36 km for the Median Dacides), as well as the upper limit of the asthenosphere, emphasized at 60–70 km depth.

The thickness and the making of the sedimentary cover is revealed, too. The mapping of the major Tethyan suture (ophiolitic suture), placed between two continental crustal blocks belonging to the Inner and Median Dacides, which offers important elements to the study of the evolution of the Pannonian–Carpathian system is also significant. The features of the pseudosections elaborated for the electrical resistivity and phase distribution, depending on the depth, are related to the transcrustal fracture and the main tectonic relationship, as well as to the obvious trend of subduction, characterizing the major tectonical units. As concerning the volcanic activity, some important intrusive bodies (Neogene and Cretaceous–Paleocene in age) are individualized. By correlating these data it was possible to elaborate quantitative models and to sustain certain hypotheses regarding the evolution of the above mentioned area.

Investigation of the Pannonian–Carpathian zone utilizing seismological data

George P. Starodub¹, Alexander V. Kendzera², Taras B. Brych¹, Andry R. Gnyp¹ & Halyna R. Starodub²

¹Carpathian Division of Geophysical Institute, Ukrainian Academy of Sciences, Naukova 3b, 290601 Lviv, Ukraine
²Geophysical Institute, Ukrainian Academy of Sciences, Yaroslavenka, 290601 Lviv, Ukraine

Taking into account the large scale of investigations of the Pannonian–Carpathian–Dinaride system lithospheric structure, we state that the Ukrainian part of Carpathian Arc remains poorly investigated yet. Although, all attempts to imagine the asthenospheric and lithospheric processes in the region connected with the collision between the Pannonian–Carpathian and Eurasian plates and to develop geodynamic models of PANCARD system are insufficient without an extension of investigations to that region. Thus, one of the important questions, connected with the exploration of deep structure and reconstruction of lithospheric processes developing in the Central Europe is a prolongation of the Carpathian zone detailed study to the South–East from territory of Poland. The last have a great importance not only for the investigation of the Earths deep structure, but for the understanding of the processes in the Pannonian massif — Carpathian mountains and their framing formation. Going out of the essential necessity of the structural re-interpretation of the Pannonian–Carpathian zone in the West Ukraine and adjacent territories, further investigations must be oriented to the reproducing of the medium volume model up to the

300 km depth using devices and numerical methods that have been tested on the territory of the Central Europe. In this situation we propose our contribution into fulfilling of the program in the form of material, technical, personnel, informative and organizing, executive help in providing of special seismological observations in order to investigate the Earths deep structure in the West regions of Ukraine with the aim of prolongation of Pannonian–Carpathian zone study from Polish part onto the South–East direction. Model experiments would be carried out in Ukraine and neighbor countries with the aim to improve computer model results and to deliver data of modeling experiments to the colleagues. Algorithms of solution of the direct-inverse dynamical seismology problem that use the matrix method, finite element method, damped least-square technique method utilizing experimentally registered seismograms are elaborated by our group. Matrix method give the possibility to analyze wave types and multiples in seismic fields. With the help of finite element method we model the areas with complex lithospheric structure: unelasticity and nonlinearity. Complex of two methods developed will give the possibility to investigate the lithospheric structure in great depth. In this connection experimental observations were used to compare with the results of the mathematical modeling to examine the proposed methods on the Ukrainian territory.