where it underlies the Carpathian overthrust. 2 — Outer (autochthonous) unit, occurring over an area north of the Carpathian margin to the Meta-Carpathian Swell. The age of the strata is Lower Badenian—Sarmatian. Recently, J. Kolárčzyk distinguished 3 — Zglobie unit, occurring between Stebnik unit and autochthonous unit which comprises the Badenian—Sarmatian deposits and extends from the vicinity of Przemyśl to Bochnia. 4 — Para-autochthonous Moesian unit (Badenian—Sarmatian inclusive), occurring in front of the Carpathians in the Wieliczka—Pilzno area. It is removed from its primary position by the Carpathian flysch. Within the outer (autochthonous) unit the anhydrite horizon (Middle Badenian) and the so-called anhydriteless zone were distinguished.

Another position is shown by the Badenian deposits lying over the Carpathian flysch. They are partially folded and occur, e.g. near Nowy Sącz, Iwkoa, Grudna Dolna and Rozdziele. At the end of the Lower Sarmatian the Flysch Carpathians, together with the Stebnik unit (Lower Mioce-ne) were finally overthrust on their Badenian—Sarmatian foreland. After regression of the sea the waters flowed to the Romania where the sedimentation lasted during Upper Sarmatian and Pliocene.

Moving Miocene Moesia or what formed the S-shape of the Carpathians?

Miklós Kázmér1 & István Dunkl2

1Department of Palaeontology, Eötvös University, Ludovika tér 2, H-1083 Budapest, Hungary
2Institute of Geology and Palaeontology, University of Tübingen, Sigwartstrasse 10, D-72076 Tübingen, Germany

The fixed position of the Moesian microplate relative to the European plate has been an axiom for Tertiary plate tectonic reconstructions of the Alpine chain for decades. We challenge these models, and suggest, that Moesia was an indenter pushed into the Alpine orogen from the east. The primary push was exerted by Arabia. Acting as a primary indenter, it caused westward lateral escape of the Moesian—Western Black Sea block into the Carpathian flysch ocean. Moesia, acting as a secondary indenter, collided with the Tisza—Rhodope unit, narrowing it in the centre and causing lateral escape bot to the north and to the south. Escaping secondary wedges suffered severe extension in the Aegean and South Pannonian domains, while belts of compression and arc volcanism developed at their prograding fronts. Review of tectonic, biostratigraphic, biogeographic and geochronological data and the evaluation of the orogen-parallel displacements between the Western Alps and the Caucasus indicate, that the Moesian indenter acted temporarily with the Adriatic indenter in forming the oroclines of the Alps and the Carpathians, and exerted considerable influence on the internal structure of the Pannonian Basin.

Analogous elements of the Adriatic vs Moesian indentation process are:

— major strike-slip faults bordering escaping wedges: Periadriatic and SEMP vs Krašhtide and Maritza faults,
— metamorphic core complexes: Tauern and Rechnitz vs Békés, Rhodope, Menderes, Cyclades,
— extensional basins: Pannonian vs Aegean,
— accretionary complexes at the fronts of the escaping wedges: Carpathian flysch belt vs Mediterranean Ridge,
— subduction-related volcanic arcs: Inner Carpathian volcanics vs Hellenide volcanic arc.

The S-shape of the Carpathians was formed by accommodation around the Pelso and Tisza indenting wedges in the north and around the Moesian indenter in the south.

Three major pushing forces have been interacting in the PANCARDI region since Miocene time: an E-ward Alpine escape, a NE-ward push of Adria in the Dinarides and a W-ward push of Moesia in the Tisza-Rhodope block. This gives a historical background to the complex pattern of Recent stress field in the region.

Illite/smectite diagenesis in Kraków—Zakopane cross-section, Outer Carpathians and Podhale flysch (Poland): preliminary results

Magdalena Kotarba1

1Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002 Kraków, Poland

The proportion of illite to smectite and ordering in I/S from shales is applied in this study as paleothermometer. The <0.2μm fractions of shales from four boreholes situated along Kraków—Zakopane cross-section were investigated by XRD method.

In two boreholes from the Outer Carpathians: Trzebunia IG1 and Tokarnia IG1 (the northern part of the Magura nappe), the diagenetic profiles of I/S are similar. Only ordered I/S is present and the percentage of smectite (%S) varies