Stopień dojrzałości materii organicznej ze skał węglanowych dewonu Gór Świętokrzyskich

Leszek Marynowski*

W ostatnim dwudziestoleciu dokonano ogromnego kroku naprzód w dziedzinie geochemii organicznej, głównie za sprawą dużego postępu instrumentalnych metod badawczych. Pozwoliły one na identyfikację i charakterystykę

nywano 0,5-metrowy włom bezpośrednio w skale, pobierając próbkę z głębi włomu. W badaniach wykorzystano również rdzenie wiertnicze z odwiertów wykonanych w latach 70. i 80., przechowywane w magazynach rdzeni.

takich połączeń organicznych wchodzących w skład większości kaustobiolitów jak: mono-, di-, tri-, tetra- i politerpany, sterany, aromatyczne steroidy i hopanoidy, węglowodory aromatyczne, tiofeny oraz metaloporfiryny. (Tissot & Welte, 1984; Peters & Moldowan, 1993). Związki te, nazywane powszechnie biomarkerami (Eglinton i in., 1964; Eglinton & Calvin, 1967) są obecnie wykorzystywane m.in. w analizie basenów sedymentacyjnych (Narkiewicz, 1995): przy określaniu środowiska depozycji materii organicznej (Didyk i in., 1978; Mackenzie, 1984), jej źródła (Huang & Meinschein, 1979; Gondek, 1980) oraz korelacji wystąpień węglowodorów ze

skałami macierzystymi (Curiale, 1994; Welte, 1965).

Z drugiej strony, biomarkery są cennym wskaźnikiem stopnia dojrzałości materii organicznej i zdolności kerogenu do generowania ropy (np. Waples & Machihara, 1991 Maliński & Witkowski, 1987; Peters & Moldowan, 1993).

W niniejszej pracy przedstawiono wstępne wyniki badań nad stopniem dojrzałości substancji bitumicznej, występującej na terenie modelowego obszaru Gór Świętokrzyskich. Wyniki, uzyskane metodą GC-MS poddano analizie i porównano z rezultatami badań stopnia dojrzałości metodą CAI (Belka, 1990).

Praca zawiera wyniki badań próbek z 29 odsłonięć, w tym z 1 otworu wiertniczego (ryc. 1).

Komplet wyników analizy GC-MS uzyskano dla para-

 $\frac{Pr+Ph}{P_{17}+C_{18}}$, natomiast w przypadku pozostałych metru

wskaźników częściowy brak danych jest spowodowany małą zawartością biomarkerów w analizowanych frakcjach oraz niewielką ilością substancji bitumicznej w stosunku do całości próbki (p. tab. 1.)

Metodyka pracy

Poboru próbek w czynnych kamieniołomach dokonywano wybierając partie skalne świeżo po odstrzale na ścianach z prowadzoną eksploatacją. W przypadku nieczynnych kamieniołomów, szurfów lub naturalnych odsłonięć wykoRyc. 1. Lokalizacja punktów poboru próbek na tle schematu Gór Świętokrzyskich

Ost - Ostrówka, GZ - Góra Zamkowa, Grb - Grabina, SK -Sitkówka-Kowala, Kdz - Kadzielnia, Jzw - Jaźwica, Rdk -Radkowice, DW - Dębska Wola, LG - Laskowa Góra, Kst -Kostomłoty

Ryc. 2. Budowa biomarkerów frakcji alifatycznej

^{*}Wydział Nauk o Ziemii, Uniwersytet Śląski, ul. Będzińska 60, 41-200 Sosnowiec

Tab.1Zestawienie wyników rozdziału frakcyjnego i geochemicznych parametrów molekularnych. ESB — ekstrahowalna
substancja bitumiczna, Al — frakcja alifatyczna, Ar — frakcja aromatyczna, NOS - frakcja ciężka + asfalteny, Pr — pristan, Ph
— fitan, C17 — n-heptadekan, C18 — n-oktadekan, Ts — trisnorneohopan C27, Tm — trisnorhopan C27
MPI-metylofenantren indeks, MDBT — metylodibenzotiofen

						Pr + Ph			
LOKALIZACJA	Litologia	ESB [%]	FR	AKCJA	[%]	$C_{17} + C_{18}$	Ts/Tm	MPI ₃	MDBT
×			Al	Ar	NOS				
REGION ŁYSOGÓRSKI									
Zachełmie	dolomit	0,032	27	11	62	0,30	-	-	-
Bukowa Góra	piaskowiec	0,024	4	17	79	0,52	0,84	-	-
Grzgorzowice	wapień	0,001	37	38	25	0,50	-	0,84	2,36
Skały	dolomit	0,003	29	22	49	0,41	1,95	-	-
STREFA PRZEJŚCIOWA KOSTOMŁOTÓW									
Laskowa Góra	dolomit	0,005	30	36	34	0,53	-	2,37	-
Kostomłoty	wapień	0,048	49	30	21	0,12	7,00	1,78	-
Górno	wapień marglisty	0,072	35	25	40	0,25	3,15	-	-
Józefka	wapień marglisty	0,086	61	19	20	0,39	1,53	0,92	2,45
Śluchowice	łupek	0,176	54	29	17	0,36	2,90	0,98	8,60
REGION KIELECKI									
Wietrznia	wapień	0,050	40	31	29	0,39	2,52	-	-
Kadzielnia	wapień marglisty	0,012	71	22	7	0,53	1,38	0,79	2,60
Grabina	wapień	0,006	11	2	87	0,37	-	1,11	6,50
Jaworznia	wapień	0,003	16	18	66	0,31	1,31	0,74	2,27
Ostrówka	wapień	0,083	56	31	13	0,59	-	-	-
Panek	wapień	0,025	20	17	63	0,45	0,65	_	-
Sitkówka - Kowala	wapień	0,017	18	24	58	0,60	0,19	0,85	1,37
Jaźwica	wapień marglisty	0,012	21	19	60	0,96	0,10	0,35	1,30
Radkowice	dolomit	0,033	51	26	23	1,26	0,57	0,28	0,46
Kowala	wapień marglisty	0,450	8	16	76	1,95	0,43	0,66	0,89
Łabędziów	dolomit	0,001	20	30	50	0,73	0,28	0,89	1,44
Rzepka	dolomit	0,076	7	3	90	0,43	0,61	-	-
Góra Zamkowa	wapień	0,010	29	27	44	0,49	0,57	0,85	1,56
Dębska Wola	dolomit	0,002	39	26	35	0,60	0,36	0,73	1,86
Płucki	wapień	0,022	49	10	41	0,81	2,04	0,69	3,57
Łagów	wapień marglisty	0,130	29	22	49	0,20	2,64	0,58	1,63
Janczyce	wapień marglisty	0,100	41	22	37	0,48	1,65	0,68	2,78
Wymysłów	wapień	0,003	40	16	44	0,33	1,32	0,60	3,13
Jurkowice	wapień marglisty	0,029	27	35	38	0,79	1,87	0,67	1,73
Budy	wapień	0,003	34	12	54	0,45	-	2,11	2,22

Ekstrakty ze skał wykonane za pomocą mieszaniny chlorek metylenu: metanol (V/V) 95 : 5, rozdzielone na frakcje techniką PLC (Marynowski, 1995), badano posługując się aparatem firmy Helwett-Packard.

Warunki analizy. Chromatograf gazowy HP 5890 II z detektorem mas HP 5971A. Kolumna HP 5, długość — 25 m, średnica — 0,2 mm. Gaz nośny — hel. Zakres mas — 55–500. Objętość nastrzyku — 1 l. Temperatura programowana: 50°C (0 min) — 10 °C/min — 110°C (0 min) — 3°C/min — 290°C (20 min). Rozpuszczalnik: chlorek metylenu (cz.d.a)

Omówienie wyników badań

Pozyskiwanie i frakcjonowanie bituminów. Ilość ekstrahowalnej substancji bitumicznej (bituminu) (Durand, 1980; Kotarba, 1995) ze skał dewońskich jest generalnie mała i zamyka się w przedziale od 0,001% do 0,45% w stosunku do całości próbki (p. tab. 1). Otrzymane wartości uzależnione są w głównej mierze od warunków depozycji pierwotnego materiału organicznego, stopnia dojrzałości kerogenu i wtórnej migracji węglowodorów (por. — Durand, 1980)

Ryc. 3. Budowa biomarkerów frakcji aromatycznej

Frakcja alifatyczna. Z parametrów charakteryzujących stopień zaawansowania termicznego kerogenu wybrano te, które zdaniem autora, najtrafniej opisują sytuację zastaną w rejonie Gór Świętokrzyskich.

Pierwszym, prostym wskaźnikiem uzyskiwanym z analizy frakcji alifatycznej a opisującym stopień dojrzałości badanych skał jest stosunek

 $\frac{Pr+Ph}{P_{17}+C_{18}}$, (Bazhenova & Arefiev, 1990) (ryc. 2).

Zależność ta bazuje na zjawisku intensywnego wzrostu stężenia *n*-alkanów (C_{17} ; C_{18}) w stosunku do izoprenoidów (pristan — Pr, fitan–Ph) wraz ze wzrostem stopnia przemian termicznych kerogenu, w wyniku jego krakingu. (Tissott i in., 1971). Wskaźnik ten łatwo uzyskać, gdyż nie wymaga to stosowania aparatury GC–MS, a *n*-alkany, pristan (Pr) i fitan (Ph) występują we frakcji w dużych stężeniach. Posiada jednak kilka poważnych wad, do których trzeba zaliczyć: uzależnienie od pierwotnych warunków sedymentacji i charakteru wyjściowej materii organicznej (Leythaeuser i in., 1986) oraz wahania jego wartości w zależności od stopnia wymycia i biodegradacji próbki (Palmer, 1984; Connan, 1984).

Schemat rozkładu stosunku $\frac{Pr+Ph}{P_{17}+C_{18}}$ na rozpatrywa-

nym terenie przedstawiono na ryc. 4.

Dla próbek pochodzących z wapieni stromatoporoidowo-koralowcowych (Panek, Sitkówka–Kowala, Jaźwica, Ostrówka, Góra Zamkowa, Jaworznia, Grabina) zaobserwowano obniżone wartości wskaźnika $\frac{Pr+Ph}{P_{17}+C_{18}}$, co może wiązać się z mocno utleniającymi warunkami sedymentacji, odmiennego typu materią źródłową (Leythauser i in., 1986) oraz z małą, zawartością substancji organicznej w skale.

Z kolei, anomalia wyników zanotowana dla próbrek pochodzących z dolomitów, a wyrażająca się obniżonym stężeniem izoprenoidów w stosunku do *n*-alkanów (p. tab. 1), wystąpiła w wyniku allochtonicznego charakteru bituminów

występujących w seriach zdolomityzowanych (Narkiewicz, 1991).

Kolejnym rozpatrywanym tu wskaźnikiem stopnia metamorfizmu kerogenu jest parametr Ts/Tm. Ten stosunek dwóch związków z grupy hopanów (ryc. 2) jest oparty na zjawisku relatywnie niższej stabilności termicznej trisnorhopanu — Tm w porównaniu z trisnorneohopanem — Ts podczas procesów katagenetycznych (Seifert & Moldowan, 1978).

Na ryc. 5 pokazano trzy przykładowe fragmentogramy (m/z 191) analizowanych próbek. Strzałka wskazuje wzrost wartości wskaźnika *Ts/Tm*, a co za tym idzie wzrost stopnia dojrzałości materii organicznej. Na ryc. 6 i w tab. 1 przedstawino rozkład wartości tego wskaźnika na analizowanym obszarze. Zaniżona wartość wskaźnika dla próbki z kam. Sitkówka–Kowala i Jaźwica wynika ze zjawiska koelucji tj. równoczesnego wymycia z kolumny tricyklicznego triterpanu C_{30} i hopanu Tm (podobnie jak: Rullkötter & Wendish, 1982).

Pozostałe wskaźniki określające stopień metamorfizmu kerogenu, a obliczane z danych analitycznych frakcji alifatycznej

(np.
$$\frac{p\beta}{(\beta\beta + \alpha \alpha)}$$
 - sterany,
 $\frac{20S}{(20S + 20R)}$ - sterany,
 $\frac{22S}{(22S + 22R)}$ - hopany o 32 atomach węgla)

nie sprawdziły się jako parametry opisujące dojrzałość ke-

Ryc. 4. Rozkład wartości wskaźnika Pr+Ph/C₁₇+C₁₈

rogenu z Gór Świętokrzyskich.

W przypadku steranów jest to spowodowane małym stężeniem tych związków w skałach węglanowych (Connan i in., 1986; Moldowan i in., 1985). Hopany C_{32} charakteryzują stadium wczesnej diagenezy, przekroczone w rozpatrywanym obszarze.

Frakcja aromatyczna

Wskaźnikami użytymi w analizie rozpatrywanego obszaru z grupy węglowodorów aromatycznych są: MPI_3 metylofenantren indeks (Radke & Welte, 1983; Angelin i in., 1983; Cassani i in., 1988) i MDBT – stosunek izome**Ryc. 5.** Dystrybucja hopanów (m/z = 191) z trzech wybranych próbek frakcji alifatycznej:

a) Sitkówka–Kowala b) Janczyce c) Górno. Strzałka pokazuje kierunek wzrostu dojrzałości termicznej. Ts — $18\alpha(H) - 22,29,30$ — Trisnorneohopan, Tm — $17\alpha(H) - 22,29,30$ — Trisnorneohopan, C₂₉ $\alpha\beta$ — $17\alpha21\beta(H)$ — Norhopan, C₂₉Ts — $18\alpha(H)$ — Norneohopan, C₃₀ $\alpha\beta$ — $17\alpha21\beta(H)$ — Hopan, C₃₀ $\beta\alpha$ — $17\beta21\alpha$ (H) — Hopan (Moretan), C₃₁ $\alpha\beta$ — $17\alpha21\beta(H) - 29$ — Homohopan, 22S i 22R, C₃₂ $\alpha\beta$ — $17\alpha21\beta(H) - 29$ — bishomohopan 22S i 22R, C₃₄ $\alpha\beta$ — $17\alpha21\beta(H) - 29$ — trishomohopan 22S i 22R, C₃₄ $\alpha\beta$ — $17\alpha21\beta(H) - 29$ — tetrakishomohopan 22S i 22R, C₃₅ $\alpha\beta$ — $17\alpha21\beta(H) - 29$ — pentakishomohopan 22S i 22R

rów metylodibenzotiofenu. (Radke & Welte, 1986), Anderson & Sielex, 1996) (ryc. 3). Zmiany wartości indeksu

$$MPI_3 = \frac{[2-MP] + [3-MP]}{[1-MP] + [9-MP]}$$

oraz

$$MDBT = \frac{[4 - MDBT]}{[1 - MDBT]}$$

są oparte na przejściu izomerów relatywnie mniej stabilnych (1–MP, 9–MP, 1–MDBT) w bardziej stabilne termicznie (2–MP, 3–MP, 4–MDBT), pod wpływem wzrostu stopnia dojrzałości kerogenu (Radke, 1988). Uzyskane wartości wskaźników MPI₃ i MDBT przedstawiono w tab. 1.

Podsumowanie

Wartości stopnia metamorfizmu kerogenu dla skał dewonu Gór Świętokrzyskich układają się w przybliżeniu równolegle do dyslokacji świetokrzyskiej, osiagając maksimum w punktach niemal bezpośrednio przy uskoku (Kostomłoty, Górno). W miarę oddalania się od dyslokacji, w strefie kieleckiej, stopniowo maleje uwęglenie materii organicznej, i przechodząc przez stadium katagenezy, stabilizuje się na poziomie późnej diagenezy (wg definicji Horsfield & Rullkötter, 1994). W strefie łysogórskiej dojrzałość materii organicznej określono na poziomie stadium katagenezy, przy czym ilość kerogenu rozproszonego w skałach jest tam zbyt mała, by mogła mieć znaczenie dla generowania i migracji węglowodorów. Wartość CAI = 3,5 dla konodontów z północnej części strefy łysogórskiej (Świętomarz) odpowiadająca przedziałowi temperatur 150 -210°C (Belka, 1990) świadczy o gwałtownym wzroście pierwotnych miąższości nadkładu w tej części Gór Świętokrzyskich. Wyniki uzyskane w tej pracy dla zachodniej części strefy kieleckiej Gór Świętokrzyskich w przybliżeniu korelują się z wynikami analizy CAI (Belka, 1990). Rozbieżności zaobserwowane we wschodniej części strefy kieleckiej, gdzie dolne granice przedziału dla CAI = 3,5 wynoszą 150°C (Belka, 1990) i są wyższe od średnich temperatur wyznaczonych na podstawie analizy biomarkerów (70-100°C).

Anomalia termiczna występująca w późnym paleozoiku Gór Świętokrzyskich (Belka, 1990; Głazek & Kutek, 1976) jest prawdopodobnie bezpośrednio związana z rozłamem świętokrzyskim, odpowiedzialnym za występujące tam różnice paleotemperatur skał dewońskich, jak również za dostarczenie ciepła wywołującego dolomityzację (Narkiewicz, 1991).

Najpełniej opisywany problem obrazuje rozkład wartości wskaźnika *Ts/Tm* (ryc. 6). Wskaźnik MPI₃ przydatny

Ryc. 6. Rozkład wartości wskaźnika T_s/T_m

jest przy opisie stopnia przeobrażenia termicznego skał dojrzałych w stadium późnej katagenezy, (dla skał II typu wg van Krevelena, 1961) uwypuklając termiczne różnice na tym poziomie (Cassani i in., 1988). W wypadku Gór Świętokrzyskich wyższe wartości MPI₃ przyjmuje materia organiczna pochodząca z kamieniołomów: Kostomłoty, Laskowa Góra oraz Budy.

Na obszarze będącym w stadium katagenezy (głównie w strefie kieleckiej i przejściowej strefie Kostomłotów), natrafiono na liczne, niewielkie skupienia substancji bitumicznej uwięzione w pustkach skalnych i geodach (Marynowski i in., 1993; Czechowski i in., 1994). Substancja ta pochodzi ze skał bitumicznych górnego dewonu (Marynowski, w przygotowaniu), które mogą zatem stanowić kuchnię dla generowania węglowodorów. Warunki geologiczne i stosunkowo niewielka ilość skał źródłowych wykluczają jednak rejon Gór Świętokrzyskich, jako perspektywiczny dla złożowych wystąpień koncentracji węglowodorów (Belka, 1990).

Literatura

ANDERSSON J. T. & SIELEX K. 1996 — J. High. Resol. Chromatogr., 19: 49–53.

ANGELIN M..L, COLLIGNAN A., BELLOCQ J., OUDIN J.L & EWALD M. 1983 — C.R. Acad. Sci. Paris, Serie II 296: 705–708. BAZHENOVA O.K, & AREFIEV O.A. 1990 — Organ. Geochem., 16: 307–311.

BELKA Z. 1990 — Courier Forsch., Inst. Senckenberg, 118: 241–251.

CASSANI F., GALLANGO O., TELUKDAR S., VALLEJOS C. & EHRMANN U. 1988 — Organ. Geochem., 13: 73–80.

CONNAN J., BOUROULLEC J., DESSORT D. & ALBRECHT P. 1986 — Ibidem, 10: 29-50.

CONNAN J. 1984 — Adv. Petrol. Geochem., 1: 299-335.

CURIALE J. A. 1994 — Amer. Ass. Petrol. Geol.Memoir, 60: 251–260.

CZECHOWSKIF., SACHANBIŃSKIM. & KOWALSKIP. 1994 — Pol. Tow. Miner., Pr. (specjalne), 5: 161–164.

DIDYK B.M., SIMONEIT B.R.T., BRASSELL S.C. & EGLIN-TON G. 1978 — Nature, 272: 216–222.

DURAND B. 1980 — Kerogen. Insoluble Organic Matter From Sedimentary Rocks — Editions Technip, Paris: 519p.

EGLINTON G. & CALVIN M. 1967 — Sci. Amer., 261: 32-43.

EGLINTON G., SCOTT P. M., BESKY T., BURLINGAME A. L. & CALVIN M. 1964 — Science, 145: 263–264.

GŁAZEK J. & KUTEK J. 1976 — Przew. 48 Zjazdu Pol. Tow. Geol, Wyd. Geol.

GONDEK B. 1980 - Pr. Inst. Geol., 47: 5-38.

HORSFIELD B. & RULLKÖTTER J. 1994 — Amer. Ass. Petrol. Geol. Memoir, 60: 189–199.

KOTARBA M. 1995 - Prz. Geol., 43: 988-992.

van KREVELEN D. W. 1961 — Coal-Elsevier, New York, 514 p. HUANG W.Y. & MEINSCHEIN W.G. 1979 — Geochim. Cosmochim. Acta, 43: 739–745.

LEYTHAEUSER D. & SCHWARZKOPF T. 1986 — Organ. Geochem., 10: 191–197.

MALIŃSKI E. & WITKOWSKI A. 1988 — Prz. Geol., 36: 230-234.

MARYNOWSKI L. 1995 — Mat. XIX Seminarium Naukowego nt. Chromatograficzne Metody Badania Związków Organicznych, Katowice, PAN: 83–84.

MARYNOWSKI L., FABIAŃSKA M. & JOHN A. 1993 — J. Planar Chromatography, 7: 122–125

MOLDOWAN J.M., SEIFERT W.K. & GALLEGOS E.J. 1985 — Amer. Ass. Petrol. Geol. Bull., 69: 1255–1268.

NARKIEWICZ M. 1991 - Pr. Państw. Inst. Geol., 82: 5-54.

NARKIEWICZ M. 1995 - Prz. Geol., 43: 381-384.

PALMER S. E. 1984 — Amer. Ass. Petrol. Geol. Bull., 68: 137–149.

PETERS K. E. & MOLDOWAN J. M. 1993 — The Biomarker Guide — Prentise Hall – New Jersey, 363 p.

RADKE M. 1988 — Marine Petrol. Geol., 5: 224-236.

RADKE M., WELTE D. H. & WILLSCH H. 1986 — Organ. Geochem., 10: 51–63.

RADKE M. & WELTE D. H. 1983 — Adv. Organ. Geochem. 1981 (ed. M. Bjoroy): 504–512.

RULLKÖTTER J. & WENDISCH D. 1982 — Geochim. Cosmochim. Acta, 46: 1543–1553.

SEIFERT W.K., & MOLDOWAN J.M. 1978 — Ibidem, 42: 77–95. TISSOT B. & WELTE D. H. 1984 — Petroleum Formation and Occurence — Springer–Verlag, New York: 699.

TISSOT B., CALIFET-DEBYSER Y., DEROO G. & OUDIN J. L. 1971 — Amer. Ass. Petrol. Geol. Bull., 55: 2177–2193.

WAPLES D.W. & MACHIHARA T. 1991 — Amer. Ass. Petrol. Geol. Methods in Exploration: 9: 1–91.

WELTE D.H 1965 — Amer. Ass. Petrol. Geol. Bull., 49: 2246-226.