GEOLOGIA SUDETICA Vol. XV, nr 2, 1980 PL ISSN 0072-100X

Jerzy DON*, Roman GOTOWAŁA*

ANALIZA STRUKTURALNA FAŁDU BZOWCA (METAMORFIK ŚNIEŻNIKA — SUDETY)

SPIS TREŚCI

Streszczenie																					107
Wstęp																					107
Makroskopowa forma fałdu Bzowca																					108
Mezostruktury fałdu Bzowca																	•				110
Pierwszy etap deformacji (D1)																	•				110
Drugi etap deformacji (D_2) .																					112
Trzeci etap deformacji (D_3) .																					114
Czwarty etap deformacji (D ₄)																					115
Wnioski		-																			117
Literatura														-							117
Structural analysis of the Bzowiec fol	d	(Śı	nie	żni	k 1	ne	tar	110	rp	hic	c 1	mi	t,	Su	de	etes	s)				118

Streszczenie

Przedstawiono wyniki szczegółowych prac kartograficznych oraz badań mezostrukturalnych przeprowadzonych na obszarze makrofałdu Bzowca w Górach Złotych między Trzebieszowicami, Skrzynką i Orłowcem. Fałd ten należy do nielicznych zidentyfikowanych jednostek tektonicznych tego typu w metamorfiku Śnieżnika. W budowie jego biorą udział gnejsy leptytowe tworzące zgodną wkładkę wśród łupków łyszczykowych suprakrustalnej serii strońskiej. Skrzydła fałdu obalone są ku SE, a powierzchnie osiowe zapadają średnio pod kątem 75° ku NW. Osie fałdu zanurzają się łagodnie ku NE. Jego amplituda w cięciu poziomym przekracza 2 km.

Na badanym obszarze stwierdzono cztery generacje mezostruktur (D_1 do D_4), wśród których dominują struktury związane z drugim etapem deformacji (D_2) . Mezofałdy tego etapu deformują penetratywną foliację S_1 i są zgodne z wykartowanym makrofałdem Bzowca. Bardzo słabo rozwinięte są mezoi makrostruktury D_3 , które w pobliskich Krowiarkach intensywnie zdeformowały struktury etapu drugiego. W etapie D_4 powstały liczne fałdy załomowe o charakterze sprzężonym, rozrywające wzdłuż stromych powierzchni równoleżnikowych i w przybliżeniu południkowych mezo- i makrofałdy etapów wcześniejszych. Wszystkie opisane struktury poprzecinane są strefami kakirytów, które powstały przed rozwojem kłodzko--złotostockiej intruzji granitoidowej, datowanej średnio na 280-300 mln lat.

WSTĘP

W północnej części metamorfiku Śnieżnika, czyli w Górach Złotych, między Trzebieszowicami, Skrzynką i Orłowcem wykartowano podczas prac przeglądowych w latach 1956–1958 duży fałd przewalony (fig. 1), nazwany fałdem Bzowca (Don 1964). W budowie jego biorą udział gnejsy leptytowe¹, tworzące

^{*} Instytut Nauk Geologicznych Uniwersytetu Wrocławskiego, Zakład Geologii Ogólnej, ul. Cybulskiego 30, 50-205 Wrocław.

^{*} Instytut Nauk Geologicznych Uniwersytetu Wrocławskiego, Zakład Geologii Stosowanej, ul. Uniwersytecka 19/20, 50-145 Wrocław.

¹ Gnejsy leptytowe Gór Złotych (Finckh i in. 1942) są to jasne, leukokratyczne skały o strukturze drobnoziarnistej, lepidogranoblastycznej i teksturze kierunkowej, z wyraźnie zaznaczoną laminacją jasnych plagioklazowych i ciemniejszych kwarcowo-plagioklazowych warstewek. Ponadto występują w nich skalenie potasowe oraz rzadko muskowit i chloryt. Minerały te wykazują kierunkowy rozrost w powierzchni złupkowania krystalizacyjnego (S₁). Według Wojciechowskiej (1972) gnejsy leptytowe zbliżone są do łupków kwarcowo-plagioklazowych w Krowiarkach, dla których materiałem wyjściowym były przypuszczalnie tufy o składzie ryolitu. Jedne i drugie występują zgodnie wśród łupków łyszczykowych serii strońskiej.

Fig. 1

Wycinek północnej części mapy geologicznej metamorfiku Śnieżnika (Don 1964)

1 - proterozoiczno-dolnokambryjska (?) suprakrustalna seria strońska (lupki łyszczykowe z wkładkami amfibolitów); 2 - oczkowe gnejsy śnieżnickie oraz gnejsy leptytowe; 3 - mylonity; 4 - migmatyczne gnejsy gierałtowskie; 5 - granitoidy waryscyjskie; 6 - osady górnokredowe; 7 - bazalty (β)
Northern fragment of geological map of the Śnieżnik metamorphic unit (Don 1964)

I - Proterozoic-Lower Cambrian (?) supracrustal Stronie series (mica schists with amphibolite intercalations); 2 - Śnieżnik augen gneisses and leptite gneisses;
3 - mylonites; 4 - migmatic Gierałtów gneisses; 5 - Hercynian granitoids; 6 - Upper Cretaceous deposits; 7 - basalts (?)

grubą do ponad 200 m wkładkę w łupkach łyszczykowych suprakrustalnej serii strońskiej. W trakcie ówczesnych prac przeglądowych nie były prowadzone obserwacje mezostrukturalne, które umożliwiłyby bliższą charakterystykę wykrytej jednostki tektonicznej i pozwoliły na przeprowadzenie studium porównawczego między makro- i mezostrukturami badanego obszaru oraz na odtworzenie historii rozwoju tego fałdu. Podjęte w 1978 roku prace mają na celu uzupełnienie tych badań i nawiązanie obserwacji mezostrukturalnych do podobnych obserwacji przeprowadzonych już w innych jednostkach tego typu (fałd Gór Różanych – Don 1972, fałd Krzyźnika – Don 1976). Równolegle z obserwacjami mezostrukturalnymi autorzy uzupełnili w trakcie prac kartograficznych obraz intersekcyjny, co pozwoliło na pełniejsze odtworzenie geometrycznej formy tego fałdu. Oprócz wyraźnej synformy prześledzono w kierunku południowo-wschodnim jego antyformę (fig. 2). Zebrane obserwacje i zestawione na siatkach Schmidta pomiary mezostruktur (1655 pomiarów) dają w miarę pełne wyobrażenie o kolejności i charakterze deformacji serii skalnych badanej części metamorfiku Śnieżnika.

Opracowanie powyższe zostało częściowo wykonane w ramach Międzyresortowego Problemu I. 16 "Geodynamika obszaru Polski".

MAKROSKOPOWA FORMA FAŁDU BZOWCA

Fałd Bzowca stwierdzony został w synklinorialnej strefie Orłowca (Don 1964), wchodzącej w skład złotostockiej gałęzi wirgacji lądeckiej (Teisseyre 1956; Don 1964). Strefa ta, szeroka do 3,5 km, wypełniona jest silnie sfałdowanymi oraz częściowo zmylonityzowanymi utworami suprakrustalnej serii strońskiej. Graniczą z nią masywy gnejsowe Radochowa (od SE) i Skrzynki (od NW). Na badanym obszarze wymienione jednostki regionalne są wydłużone ogólnie w kierunku SW-NE (fig. 1). W północnej części metamorfiku Śnieżnika zostały wygięte w łuk otwarty ku północnemu zachodowi, w obrębie którego fałdy są przewalone na zewnątrz, czyli w kierunkach południowych.

Fałd Bzowca znajduje się w osiowej części synklinorium Orłowca. Wykartowany został stosunkowo szczegółowo, dzięki ostrym granicom litologicznym między gnejsami leptytowymi a otaczającymi je łupkami łyszczykowymi. W cięciu poziomym (na mapie) tworzy on formę intersekcyjną o długości

Fig. 2

Mapa geologiczno-strukturalna fałdu Bzowca

l = aluwia; 2 = 2yly lamprofirowe; 3 = migmatyczne gnejsy gierałtowskie; 4 = gnejsy leptytowe; 5 = lupki łyszczykowe z wkładkami amfibolitów; 6 = uskoki (linia ciągla = stwierdzone, linia przerywana = przypuszczalne); 7 = 3 fady powierzchni osiowych (kreska z jedną kropką = F_1 , kreska z dwoma kropkami = F_2 , kreska z trzema kropkami = F_3); 8 = bieg i zapad struktur planarnych S_1 i S_2 ; 9 = bieg i zapad struktur planarnych S_4 ; 10 = orientacja osi mezofaldów F_4 ; 14 = asymetria mezofaldów F_4 ; 16 = 0 for the factor of th

Geologic-structural map of the Bzowiec fold

1 -- alluvia; 2 - lamprophyry dikes; 3 - migmatic Gierałtów gneisses; 4 - leptite gneisses; 5 -- mica schists with amphibolite intercalations; 6 - faults (solid line - ascertained, dashed line - inferred); 7 - traces of axial planes (dash-dotted line - F₁, dash-double dotted line - F₂, dash-triple dotted line - F₃);
8 - dip and strike of S₁ and S₂ planar structures; 9 - dip and strike of S₄ surfaces; 10 - orientation of F₁ mesofold axes; 11 - orientation of F₂ axeses and lineation L₂; 12 - orientation of F₃ axes; 13 - orientation of conjugate F₄ folds; 14 - asymmetry of F₁ and F₂ mesofolds

około dwóch kilometrów, przy szerokości fałdu ponad jeden kilometr (fig. 2). Powierzchnie osiowe opisywanego fałdu (synformy i antyformy) są wydłużone ogólnie w kierunku SW–NE, czyli zgodnie ze strukturami synklinorium Orłowca, i zapadają średnio pod kątem 70 do 80° ku NW, przy osiach zanurzających się pod zmiennym kątem od 5° do 15° (w skrajnych przypadkach do 40°) ku północnemu wschodowi. Fałd Bzowca jest silnie ściśnięty, a skrzydła jego zapadają monoklinalnie ku NW (fig. 10 i 11), przy czym w północno-zachodnim skrzydle synformy oraz w południowo-wschodnim skrzydle antyformy serie skalne mają pozycję odwróconą (fig. 2). Falisty przebieg granic litologicznych na skrzydłach synformy, a zwłaszcza antyformy fałdu Bzowca oraz analiza pomiarów foliacji krystalizacyjnej (fig. 2, 9, 11 i 12) pozwalają wnioskować o słabym zdeformowaniu poprzecznym opisywanej jednostki tektonicznej, związanym przypuszczalnie z młodszym wielkopromiennym odkształceniem utworów metamorfiku Śnieżnika. Jeszcze młodszy etap deformacji reprezentują uskoki tnące opisywany fałd głównie wzdłuż kierunków zbliżonych do równoleżnikowego (fig.2). Natomiast obecność strefy silnie wydłużonych soczew łupków łyszczykowych w obrębie gnejsów leptytowych synformy oraz podłużne rozczepienia tych gnejsów na skrzydłach antyformy (fig. 2) mogą być objawem bardzo intensywnego fałdowania poprzedzającego etap rozwoju opisywanej formy geometrycznej fałdu Bzowca. Wysunięte powyżej sugestie o liczbie i kolejności etapów deformacji opisywanej jednostki tektonicznej wymagają sprawdzenia za pomocą szczegółowej analizy strukturalnej.

MEZOSTRUKTURY FAŁDU BZOWCA

Gnejsy leptytowe Gór Złotych są odporne na wietrzenie, w związku z czym tworzą grzędy, wzdłuż których występuje stosunkowo dużo naturalnych odsłonięć o dogodnych warunkach do prowadzenia szczegółowych badań mezostrukturalnych. Są masywne, ale mają zwykle wyraźną oddzielność płytową zgodną z foliacją krystalizacyjną o charakterze penetratywnym, która pokrywa się najczęściej z pierwotną stratyfikacją (S_0) badanych serii. Oddzielność ta znacznie ułatwia śledzenie i określanie geometrii struktur deformacyjnych. Punktem wyjścia do rekonstrukcji historii ruchów fałdowych było ustalenie stosunku penetratywnej foliacji S_n do kolejnych etapów deformacji oznaczonych indeksami n+1, n+2 itd. Foliacja penetratywna jest bowiem cechą szczególnie przydatną do korelacji odkształceń w gnejsach, gdyż jest strukturą planarną trudną do zatarcia w trakcie młodszych fałdowań (Park 1969). W wyniku takiego postępowania na badanym obszarze dało się wyodrębnić cztery etapy deformacji (D_1 do D_4), z których każdy jest reprezentowany przez własny zespół fałdów (F), powierzchni planarnych (S) i lineacji (L). W seriach metamorficznych Gór Złotych, poza powierzchniami stratyfikacyjnymi S_0 , nie stwierdzono dotychczas mezostruktur poprzedzających rozwój penetratywnej foliacji krystalizacyjnej, którą dlatego określono symbolem S_1 , a etap związanej z nią deformacji symbolem D_1 (tab. 1).

PIERWSZY ETAP DEFORMACJI (D1)

Etap D_1 reprezentują bardzo rzadkie i trudne do identyfikacji fałdy izoklinalne, zaburzające laminację stratyfikacyjną (S_0) . Obserwuje się je głównie jako relikty partii przegubowych (fig. 3 i pl. I, *1*, *2* i *3*) lub w postaci izoklinalnych fałdów śródfoliacyjnych (pl. II, *1*). Mają one charakter fałdów symilarnych z pogrubionymi przegubami i wycienionymi skrzydłami (fig. 3 i pl. I, *3*), w których często dochodziło do wytarcia skrzydła brzusznego (pl. II, *1*). Równo-

Rozlaminowane strefy przegubowe mezofałdów F₁. NE ściana odsłonięcia gnejsów leptytowych na NW skrzydle synformy fałdu Bzowca (gęsta szrafura – wkładki łupków łyszczykowych i łyszczykowo-amfibolitowych)

Rozlaminated and sheared-off hinge regions of F_{I} mesofolds. NE faces of exposure in leptite gneisses on NW limb of synform of the Bzowiec fold (dense hatchure -- intercalation of mica schists and mica-amphibolite schists)

legle do ich powierzchni osiowych rozwinięta jest powszechna (penetrative) foliacja S_1 , wykształcona głównie w procesie rekrystalizacji naśladowczej jako laminacja metamorficzna. Zaciera ona skutecznie pierwotną laminację stratyfikacyjną S_0 , która w formie reliktowej zachowała się jedynie w przegubach fałdów F_1 (fig. 3 i pl. I, 3), ocalonych w procesie rozwoju foliacji penetratywnej. Przetrwanie struktur powierzchniowych wcześniejszych od S_1 jest możliwe głównie w strefach kontaktu utworów o skrajnie różnych właściwościach odkształcania. Na badanym obszarze takie zjawiska obserwowano zwykle w strefach pojawiania się grubszych lamin kwarcowo-skaleniowych w obrębie łupków łyszczykowych (pl. II, I) oraz na kontaktach z gnejsami leptytowymi (Fig. 3

111

Charakterystyka zespołów drobnych fałdów makrostruktury Bzowca Characteristics of sets of small folds of the Bzowiec macrostructure

Cechy określające	Fai	ldy etapu – Folds of episo		
Descriptic features	<i>D</i> ₁	D ₂	D ₃	D4
Kształt w przekroju Shape in cross-section	izoklinaln _e , symilarne isoclinal, similar	ściśnięte do otwartych, koncentryczne do symilar- nych tight to open, concentric to similar	otwarte, koncentryczne open, concentric	otwarte, załomowe open, kink-bands
Rozciągłość przegubów Hinge extent Charakter powierzchni osiowej Character of axial plane	krótkie, niecylindryczne short, noncylindrical powszechna laminacja metamorficzna common metamorphic lamination	długie, cylindryczne long, cylindrical od kliważu spękaniowego po krenułacyjny fracture cleavage to crenu- latin cleavage	nieznana unknown nieznany unknown	krótkie short strefy kliważu spęka- niowego i spękań sprzę- żonych zones of fracture cle- avage and conjugate fractures
Współwystępowanie lineacji zgodnej z osią fałdu Co-existence of axisparallel lineation	w reliktowych przegu- bach lineacja z przecię- cia S_0/S_1 , rodding in relic closures S_0/S_1 intersection lineation, rodding	z przecięcia S_2/S_1 , S_0 , rodding, gufraż budinaż S_2/S_1 , S_0 intersection line- ation, rodding, wrinkling, budinage	pojedyncze segregacje kwarcowe single guartz segrega- tion	z przecięcia S ₄ /S ₁ S ₄ /S ₁ intersection line- ation
Asymetria Asymmetry	trudna do określenia, w kilku przypadkach lewoskrętna (SW) hardly deciphrable, sini- stral (SW) in some cases	lewoskrętna (NW) i pra- woskrętna (SE) uzależnio- na od pozycji w fałdzie wyższego rzędu sinistral (NW) and dextral (SE) depending on their position in limbs of higer order folds	nieznana unknown	lewoskrętna (SW) i pra- woskrętna (NE) sinistral (SW) and dextral (NE)
Występowanie Occurrence	rzadkie, związane ze stre- fami kontaktu utworów o różnej podatności rare, associated with contact zones of diffe- rently competent rocks	powszechne Common	rzadkie rare	liczne, przewaga w łup- kach łyszczykowych numerous, dominating in mica schist
Odpowiadające im ma- krostruktury Corresponding macro- structures	? niepewne fałdy leżące o wschodnim zamknię- ciu uncertain recumbent folds with eastern clo- sures	nachylone fałdy nadające styl budowie regionalnej, fałd Bzowca inclined folds defining re- gional tectonic style, Bzo- wiec fold	poprzeczne zafałdowa- nia struktur dominują- cych transversal refolding of the main structures	uskoki faults

i pl. I, 1 i 3). Równie rzadko spotykane są zgodne do osi fałdów F_1 struktury linijne L_1 , powstałe z przecięcia powierzchni S_0/S_1 (pl. I, 2 i fig. 4) lub rzadziej w formie prętów skaleniowo-kwarcowych typu rodding (pl. II, 1). Zarówno osie fałdów F_1 , jak i struktury linijne L_1 wykazują pełny rozrzut w azymutach od 225 do 55° przy zanurzeniach 5 do 30, a skrajnie do 70° (fig. 5). Na niektórych fałdach widać, że zmienność ta ma charakter ciągły i dokonuje się w powierzchniach osiowych fałdów (fig. 4, pl. I, 1). Jest ona jedną z cech charakterystycznych pierwszego etapu deformacji, niezależną od późniejszych odkształceń. Wygięcie osi fałdów F_1 w ich powierzchniach osiowych świadczy o bardzo silnym uplastycznieniu fałdowanych serii skalnych oraz o niecylindrycznym charakterze opisywanych fałdów. Na duży rozrzut orientacji fałdów F_1 wpływają ponadto deformacje młodszych etapów (fig. 2). Stosunkowo stała natomiast jest przestrzenna orientacja foliacji penetratywnej (S_1) , rozwinięta w powierzchniach osiowych fałdów F_1 z wyraźnym maksimum 320/80°. W strefach przegubowych fałdów tnie ona skośnie laminację stratyfikacyjną, która mierzona po obwiedniach daje, przy niewielu dotychczas pomiarach, średnią orientację 140/40° (fig. 3). Analiza mezofałdów F_1 występujących w obrębie makrofałdu Bzowca potwierdza sugestie, wynikające z analizy obrazu kartograficznego, o istnieniu wcześniejszej od opisywanego

Fig. 4

Partia przegubowa mezofałdu F_1 o osi wygiętej w powierzchni foliacji głównej S_1 i deformowanej przez fałd F_2 . Odpreparowany fragment jednego z przegubów przedstawionych na figurze 3 Hinge region of F_1 mesofold with curved axis in plane of the main foliation S_1 deformed by F_2 fold. Exposed fragment of one of the fold closures seen in figure 3

Fig. 5

Diagram ilustrujący orientację mezofałdów F_1 – cały obszar (dolna półkula siatki Schmidta)

Diagram of orientation of F_1 mesofolds – whole region (lower hemisphere of Schmidt net)

makrofałdu dużej formy fałdowej, prawdopodobnie przewalonej w kierunku wschodnim lub południowowschodnim.

DRUGI ETAP DEFORMACJI (D2)

Etap D_2 reprezentują głównie fałdy ciągnione, deformujące wyraźnie foliację S_1 oraz powierzchnie osiowe fałdów F_1 (fig. 3 i 4 oraz pl. III, 3). Struktury drugiego etapu deformacji dominują wśród mezostruktur badanego obszaru i narzucają styl regionalnym jednostkom tektonicznym północnej części metamorfiku Śnieżnika. Fałdy F_2 są powszechne (fig. 2) i stanowią zróżnicowaną grupę zarówno pod względem wielkości, jak i geometrii. Obok drobnych fałdów rzędu paru centymetrów (pl. III, 1, 2 i 3), obserwuje się większe (fig. 6, pl. II, 2, 3, 4 i pl. IV, 2) oraz duże w skali odsłonięcia (fig. 6 i pl. IV, 1, 2).

Asymetryczne fałdy F_2 drugiego i trzeciego rzędu w odsłonięciu gnejsów leptytowych na SE (normalnym) skrzydle synformy fałdu Bzowca. K – strefa kakirytów

Asymmetrical F_2 folds of second and third order in exposure of leptite gneisses on SE (normal) limb of synform of the Bzowiec fold. K – kakirite zones

W klasyfikacji geometryczno-strukturalnej (Jaroszewski 1974) fałdy F_2 należą zarówno do kategorii fałdów symilarnych (pl. II, 3; pl. III, 1; pl. IV, 2), jak i koncentrycznych (pl. III, 2). Rozwinęły się one głównie w procesie fałdowania ze zginania (szczególnie w gnejsach leptytowych). W miarę nasilania się deformacji coraz większe znaczenie uzyskiwało fałdowanie kliważowe, rozwijające się najwcześniej i najsilniej w łupkach łyszczykowych (pl. III, 3). Równolegle do powierzchni osiowych mezofałdów F_2 jest wykształcony kliważ krenulacyjny (pl. II, 3), który w przecięciu z powierzchniami S_1 daje bardzo wyraźną lineację L_2 , podkreśloną dodatkowo drobnym zmarszczkowaniem (pl. II, 4) budinażem (pl. II, 2) i roddingiem (pl. III, 2).

W zależności od charakteru fałdu możemy obserwować szersze lub węższe strefy występowania struktur linijnych na odkształcanych powierzchniach. W fałdach otwartych są one rozwinięte z reguły na całej powierzchni (pl. IV, 1), w fałdach ściśniętych zawężają się do stref przegubowych, natomiast w fałdach asymetrycznych występują głównie na skrzydłach krótkich (pl. II, 4). Zależność ta wskazuje

Diagram ilustrujący orientację mezofałdów F_2 – cały obszar 82 pomiary. Kontury: 0, 3, 8, 11, 15 (16,2)%; dolna półkula siatki Schmidta

Diagram of orientation of F_2 mesofolds – whole area 82 measurements. Contours: 0, 3, 8, 11, 15 (16,2)%; lower hemisphere of the Schmidt net

Diagram ilustrujący orientację struktur planarnych S_1 i S_2 – cały obszar

425 pomiarów. Kontury: 0; 0,47; 1,1; 2,3; 4,7; 9,4; 14,1 (15,2)%; dolna półkula siatki Schmidta

Diagram of orientation of S_1 and S_2 planar structure – whole area

425 measurements. Contours: 0; 0,47; 1,1; 2,3; 4,7; 9,4; 14,1 (15,2) per cent; lower hemisphere of the Schmidt net

Diagram ilustrujący orientację struktur linijnych L_2 – cały obszar

115 pomiarów. Kontury: 0; 2,6; 6; 13; 15 (16,5)%; dolna półkula siatki Schmidta

Diagram of orientation of L_2 linear structures – whole area 115 measurements. Contours: 0; 2, 6; 6; 13; 15 (16,5) per cent; lower hemisphere of the Schmidt net

. Diagram ilustrujący orientację struktur planarnych S_1 i S_2 – synforma fałdu Bzowca (gnejsy leptytowe)

70 pomiarów. Kontury: 0; 1,4; 2,8; 5,7; 11,4; 18,5 (20)%; dolna półkula siatki Schmidta

Diagram of orientation of S_1 and S_2 planar structures – synform of the Bzowiec fold (leptite gneisses)

70 measurements. Contours: 0; 1,4; 2,8; 5,7; 11,4; 18,5 (20) per cent; lower hemisphere of the Schmidt net

Fig. 11

Diagram ilustrujący orientację struktur planarnych S_1 i S_2 – antyforma fałdu Bzowca (gnejsy leptytowe)

- 45 pomiarów. Kontury: 1,1; 3,3; 5,5; 11,1 (15,5) %; dolna półkula siatk¹ Schmidta
- Diagram of orientation of S_1 and S_2 planar structures antiform of the Bzowiec fold (leptite gneisses)
- 45 measurements. Contours: 1,1; 3,3; 5,5; 11,1 (15,5) per cent; lower hemisphe re of the Schmidt net

na rozwój struktur linijnych L_2 głównie wzdłuż przecięć powierzchni S_1 z S_2 . Omawiana lineacja ma zwykle przebieg zgodny z osiami mezofałdów F_2 (fig. 7 i 8), niekiedy jednak owija strefy przegubowe pod ostrymi kątami (pl. IV, *I*). Podobne przypadki Żelaźniewicz (1976) tłumaczy wpływem ruchów ścinających, które w końcowym etapie rozwoju fałdów ze zginania deformują nieco wcześniej utworzone struktury linijne.

Cechy mezofałdów F_2 odpowiadają cechom wykartowanej makrostruktury fałdu Bzowca. Tak więc zasadnicze formy jednostek tektonicznych w Górach Złotych związane są z drugim etapem deformacji. Analiza asymetrii mezofałdów F_2 (fig. 2; pl. II, 2, 3, 4 i pl. IV, 2) oraz stosunek kliważu S_2 do S_1 pozwalają określić NW skrzydło makrostruktury Bzowca jako odwrócone, a skrzydło SE jako normalne. Pomiary powierzchni S_1 i S_2 wskazują na zanurzanie się obu osi makrofałdu w kierunku północno-wschodnim (fig. 9, 10, 11 i 12) i potwierdzają synformę jego północno-zachodniej części oraz antyformę części południowo-wschodniej. W nomenklaturze Turnera i Weissa (1963) jest to fałd nachylony o zanurzających się osiach ("plunging inclined fold").

Fig. 12

Diagram ilustrujący orientację struktur planarnych S₁ i S₂ – cały obszar; gnejsy leptytowe 157 pomiarów. Kontury: 0; 0,63; 1,27; 3,18; 6,3; 12,7 (19,1)%; dolna półkula siatki Schmidta

Diagram of orientation of S_1 and S_2 planar structures — whole area; leptite gneisses

157 measurements. Contours: 0; 0,63; 1,27; 3,18; 6,3; 12,7 (19,1) per cent; lower hemisphere of the Schmidt net

TRZECI ETAP DEFORMACJI (D₃)

Etap D_3 jest na badanym obszarze najsłabiej udokumentowany. Związane z nim mezostruktury są nieliczne, słabo rozwinięte i trudne do identyfikacji. Zaliczono do nich fałdy otwarte o niewielkiej amplitudzie, deformujące foliację krystalizacyjną S_1 w fałdy koncentryczne bez wyraźnych struktur planarnych w powierzchniach osiowych. Fałdom F_3 rzadko towarzyszą struktury linijne, podkreślone wydłużonymi segregacjami kwarcowymi. W makroformie fałdy F_3 zaznaczają się wygięciem i undulacją skrzyde fałdu Bzowca, szczególnie jego antyformy (fig. 2 11, 13). Osie wyznaczonych na diagramach pasów foliacji mieszczą się w rozrzucie pomiarów osi mezofałdów F_3 (fig. 14). Na badanym obszarze omawiane fałdy nakładają się poprzecznie na fałdy etapu drugiego. Taka zależność może świadczyć o ich bliskim związku genetycznym i czasowym. Problem ten został szerzej omówiony w opisie złożonego fałdu Krzyżnika (Don 1976a), jak również w charakterystyce nałożonych struktur linijnych L_2 i L_3 w gnejsach śnieżnickich oraz gierałtowskich, tworzących szerokie strefy przejściowe w masywie Radochowa (Don 1977) i Międzygórza (Don – w druku).

Fig. 13

Diagram ilustrujący orientację struktur planarnych S_1 i S_2 – cały obszar; łupki łyszczykowe

165 pomiarów. Kontury: 0; 0,6; 1,2; 3; 6; 12 (13,6) %; dolna półkula siatki Schmidta

Diagram of orientation of S_1 and S_2 planar structures – whole area; mica schists

165 measurements. Contours: 0; 0,6; 1,2; 3; 6; 12 (13,9) per cent; lower hemisphere of the Schmidt net

Diagram ilustrujący orientację mezofałdów F_3 – cały obszar (dolna półkula siatki Schmidta)

Diagram of orientation of F_3 mesofolds — whole area (lower hemisphere of the Schmidt net)

Zaskakująco nikły jest natomiast wpływ struktur etapu trzeciego na geometrię fałdu Bzowca w porównaniu z wpływem tych struktur na fałd Krzyżnika, a szczególnie z fałd Gór Różanych (Don 1972) w pobliskich Krowiarkach.

CZWARTY ETAP DEFORMACJI (D4)

Etap D_4 reprezentują otwarte fałdy załomowe, znacznie częściej spotykane na badanym obszarze niż mezostruktury etapu trzeciego. Tworzą one dwa zespoły deformacji sprzężonych, rozrywające wszystkie wcześniej opisane mezostruktury fałdu Bzowca (fig. 15). Powierzchnie osiowe fałdów tego etapu oraz równoległe do nich powierzchnie załomowe dają jedno wyraźne maksimum w azymucie 350 do 5/75° i drugie słabsze w przeciwstawnych azymutach 80-100/80° i 260/75° (fig. 16). W powierzchniach osiowych - szczególnie pierwszego maksimum obserwuje się stosunkowo silny kliważ spękaniowy. Spękania te są niekiedy wypełnione cienkimi żyłkami kwarcu. Osie przegięć fleksuralnych koncentrują się w dwóch azymutach: 350/50 i 275/50° (fig. 17), przy czym pierwsza grupa fałdów ma charakter lewo-, a druga prawoskrętny. Występują bardzo licznie w łupkach łyszczykowych (pl. V, 2), rzadziej w amfibolitach i gnejsach leptytowych, w których reprezentowane są głównie przez zespoły powierzchni sprzeżonych S_4 (pl. V, 1). Z mezostrukturami etapu czwartego o równoleżnikowych powierzchniach załomowych związany jest najprawdopodobniej uskok obcinający NW skrzydło synklinorialnej części fałdu Bzowca (fig. 2).

Elementem strukturalnym młodszym od fałdów F_4 są spękania ze strefami kakirytów (Kozłowska-Koch 1973), tnące wszystkie opisane mezostruktury (pl. III, I i fig. 6 oraz 18). Strefy te są wydłużone

Fałdy załomowe F_4 deformujące struktury F_2 . Skałka amfibolitów w północno-zachodniej części wsi Skrzynka

 F_4 kink bands affecting F_2 structures. Amphibolite crag in northwestern part of the village of Skrzynka

Fig. 16

Diagram ilustrujący orientację struktur planarnych S₄ (maksima I i II) oraz powierzchni ze strefami kakirytów (K) – cały obszar 906 pomiarów. Kontury: 0,05; 0,55; 1,1; 2,1; 4,4; 7,7 (8,3) %; dolna półkula siatki Schmidta

- Diagram of orientation of S_4 planar structures (maxima I and II) and kakirite zones (K) whole area
- 906 measurements. Contours: 0,05; 0,55; 1,1; 2,1; 4,4; 7,7 (8,3) per cent; lower hemisphere of the Schmidt net

w kierunku NNE-SSW. W okolicy Złotego Stoku są one ścięte powierzchnią granitoidowej intruzji kłodzko-złotostockiej (Finckh i in. 1942; Don 1976b), datowanej średnio na 280 do 300 mln lat (górny karbon). Ponieważ deformacje F_4 zostały stwierdzone w osadach górnego dewonu okolic Kłodzka (Wojcie-

Fig. 17 Diagram ilustrujący orientację sprzężonych mezofałdów F₄ – cały obszar 97 pomiarów. Kontury: 0,5; 2; 4,6; 7,2; 13,4 (14,6) %; dolna półkula siatki Schmidta Diagram of orientation of conjugate F₄ mesofold – whole area 97 measurements. Contours: 0,5; 2; 4,6; 7,2; 13,4 (14,6) per cent; lower hemisphere of the Schmidt net

chowska 1973), wiek ich rozwoju jest związany przypuszczalnie z fałdowaniami dolnokarbońskimi. Natomiast etapy deformacji starszych poprzedzały sedymentację wspomnianych serii osadowych górnego dewonu.

Fig. 18

Żyłka kwarcowa wypełniająca spękanie S_4 porozrywana wzdłuż powierzchni kakirytyzacji (K). Skałka łupków łyszczykowych w jądrowych partiach synformy fałdu Bzowca

Quartz veinlet filling S_4 fracture, disrupted along surface parallel to kakiritization zones (K). Crag of mica schists in the core of synform of the Bzowiec fold

WNIOSKI

Szczegółowe prace kartograficzne oraz badania mezostrukturalne umożliwiły odtworzenie zarówno formy geometrycznej, jak i historii rozwoju fałdu Bzowca. Skrzydła fałdu są obalone ku SE, a powierzchnie osiowe zapadają średnio pod kątem 75° ku NW. Osie fałdu (synformy i antyformy) zanurzają się łagodnie ku NE.

Na badanym obszarze stwierdzono cztery generacje mezostruktur (D_1 do D_4), wśród których dominują wyraźnie deformacje związane z etapem drugim. Mezofałdy tego etapu są zgodne z wykartowanym makrofałdem Bzowca, ale deformują już foliację penetratywną S_1 , rozwiniętą w powierzchniach osiowych fałdów leżących F_1 . Interesujący jest bardzo słaby rozwój mezo- i makrodeformacji etapu trzeciego (D_3) , które intensywnie przebudowały w pobliskich Krowiarkach struktury tektoniczne etapu drugiego. Do deformacji etapu czwartego należą dość powszechnie występujące fałdy załomowe o charakterze sprzężonym, rozrywające wzdłuż stromych powierzchni równoleżnikowych i w przybliżeniu południkowych mezostruktury etapów wcześniejszych.

Deformacje etapów D_1 do D_3 poprzedzały sedymentację osadów górnego dewonu okolic Kłodzka, natomiast deformacje etapu czwartego (D_4) oraz młodsze od nich strefy kakirytów zostały ścięte powierzchnią górnokarbońskiej intruzji granitoidów kłodzko-złotostockich.

LITERATURA

- DON J., 1964: Góry Złote i Krowiarki jako elementy składowe metamorfiku Śnieżnika. The Złote and Krowiarki Mts as Structural Elements of the Śnieżnik Metamorphic Massif, *Geol. Sudetica*, vol. 1.
 - 1972: The Różane Mts Fold in Krowiarki (Lądek Śnieżnik Metamorphic Massif in Sudetes), Bull. Acad. Pol. Sci., Sér. sc. de la Terre, vol. XX, no. 4.
 - 1976 a: Następstwo deformacji marmurów Góry Krzyżnik w nawiązaniu do makrostruktur metamorfiku Śnieżnika.
 Problem wieku deformacji serii zmetamorfizowanych Ziemi Kłodzkiej. Materiały Konferencji Terenowej, Międzylesie 11-12 września 1976, Wrocław.
 - 1976 b: Kakiryty Gór Złotych i ich stosunek do granitoidów kłodzko-złotostockich. Problem wieku deformacji serii zmetamorfizowanych Ziemi Kłodzkiej. Materiały Konferencji Terenowej, Międzylesie 11-12 września 1976, Wrocław.
 - 1977: The New Data on Interrelation between the Śnieżnik and Gierałtów Gneisses (Sudetes), *Estudios geol.*, 33, Madrid.
- DON J., (w druku): Entwicklung der Migmatite in der Zone der "Übergangsgneisse" von Międzygórze (Śnieżnik-Metamorphik – Sudeten). Deformation und Metamorphose von Gesteinen, Vol. II – Beiträge der Arbeitsgruppe 4.3 der Problemkommission IX der multilateralen Zusammenarbeit der Akademien der Wissenschaften sozialistischer Länder. Akademie der Wissenschaft der DDR – Zentralinstitut für Physik der Erde. Potsdam.
- FINCKH L., MEISTER F., FISCHER G., BEDERKE E., 1942: Geologische Karte des Deutschen Reiches 1 : 25000.

H. 343. Blat Glatz, Königshein, Reichenstein und Landeck (Erläuterungen), Reichsamt für Bodenforschung, Berlin.

ł

- FISCHER G., 1936: Der Bau des Glatzer Schneegebirges, Jb. Preuss. Geol. Landesanst., 56.
- JAROSZEWSKI W., 1974: Tektonika uskoków i fałdów, Wyd. Geol., Warszawa.
- KOZŁOWSKA-KOCH M., 1973: Polimetamorfity strefy tektonicznej Złoty Stok-Skrzynka w Sudetach, Geol. Sudetica, vol. VIII.
- PARK R. G., 1969: Structural Correlation in Metamorphic Belts, *Tectonophysics*, vol. 7, nr 4.
- TEISSEYRE H., 1956: Some Remarks on the Tectonic Structure of Caledonides and Variscides in the Sudeten, Bull. Acad. Pol. Sci., Ser. sc. Cl. 3, vol. IV.
- TURNER F. J., WEISS L. E., 1963: Structural Analysis of Metamorphic Tectonites, Mc G1aw-Hill, New York.
- WOJCIECHOWSKA I., 1972: Preliminary Results of Investigations on So-called "Quartzites" in the Neighbourhood of Romanowo (Stronie Complex), NW Part of Krowiarki (East Sudetes). Bull. Acad. Pol. Sc., Sér. sc. de la Terre. vol. XX, no. 4.
- WOJCIECHOWSKA I., 1973: The Tectonic Position of the Kłodzko-Złoty Stok Granitoids. Revue des problèmes geologigues des zones profondes de l'écorce terrestre en basse Silésie. XV-e Session de l'AZOPRO. Inst. des sci. geol. de l'Acad. Pol. des Sciences. Warszawa.
- ŻELAŹNIEWICZ A., 1976: Tectonic and Metamorphic Events in the Polish Part of the Orlickie Mts, *Geol. Sudetica*, vol. XI, nr 1.

Jerzy DON, Roman GOTOWAŁA*

STRUCTURAL ANALYSIS OF THE BZOWIEC FOLD (ŚNIEŻNIK METAMORPHIC UNIT, SUDETES)

ABSTRACT: The paper presents the results of mapping and mesostructural investigations of the Bzowiec macrofold between the villages of Trzebieszowice, Skrzynka and Orlowiec. The fold is one of few yet identified tectonic units of this type in the Śnieżnik region. Leptite gneisses concordantly set in mica schists of the supracrustal Stronie series are involved in these folds. Fold limbs are inclined southeastwards and its axial plane dips 75° to NW. The fold axis as well as accompanying mesofolds plunge shallowly to NE. The discussed fold has amplitude exceeding 2 km. In the investigated region four generations of mesostructures have been recognized (D_1 to D_4). The second generation structures are dominating. Mesofolds of this generation deform penetrative S_1 foliation and are consistent with the mapped Bzowiec fold. Meso- and macrostructures of D_3 set are very faint in this region, though they are intensely developed in the adjacent region of Krowiarki. D_4 generation is represented by conjugate kink folds. The conjugate kink planes run meridionally and along parallels. The structures of all the mentioned sets are cross-cut by kakirite zones which preceded the emplacement of the Kłodzko-Złoty Stok granitoids (280–300 m.y.).

INTRODUCTION

A large-scale inclined fold was mapped in 1956-1958 in northern part of the Śnieżnik metamorphic unit between the villages of Trzebieszowice, Skrzynka and Orłowiec (fig. 1). The fold was called the Bzowiec fold (Don 1964). It is one of few tectonic units of this type identified so far in the Śnieżnik region. Leptite gneisses (Finckh *et al.* 1942) are involved in this fold. The gneisses form a 200 m thick intercalation in mica schists of the supracrustal Stronie series (Fischer 1936; Don 1964). To recognize more closely the discussed tectonic unit further investigations were undertaken in 1978, which allowed to compare it with already known units of the same type (Góry Różane fold – Don 1972; Krzyżnik fold – Don 1976a).

MACROSTRUCTURAL FORM OF THE BZOWIEC FOLD

The Bzowiec fold appears in an axial zone of the Orłowiec synclinorium belonging to the Złoty Stok branch of the Lądek virgation (Teisseyre 1956; Don 1964). The zone is 3,5 km wide and is built of intensely folded and partly mylonitized rocks of the supracrustal Stronie series. It strikes in the NE-SW direction (fig. 1). Sharp lithological boundaries between the leptite gneisses and mica schists allow to map the Bzowiec fold occupying nearly 2 km² at the present erosion level (fig. 2). The fold is strongly tight and inclined. Its limbs dip monoclinally northwestward (figs. 10, 11) and the rock series are inverted

in northwestern limb of the synform and in southeastern limb of the antiform. The axial planes of synform and antiform strike in the NE-SW direction being inclined to NW at angle of $70-80^{\circ}$. The fold axis plunge shallowly northeastward at 5° to 15° (figs. 7, 8). Strongly elongate lenses of mica schists in the axial zone of leptite gneisses and divergence of antiform limbs point to deformation earlier than the Bzowiec fold itself. Curvatures in fold limbs indicate younger superimposed deformations (figs. 2, 9, 11).

MESOSTRUCTURES OF THE BZOWIEC FOLD

The majority of mesostructural observations was gathered in leptite gneisses that occur in numerous exposures and are distinctly foliated. To recognize the development of the Bzowiec fold the authors defined a relationship between penetrative S_1 foliation, considered as the correlative feature in gneisses (cf. Park 1969) and various sets of deformational structures occurring in the investigated region. Four sets of these structures were distinguished (tab. 1). They are represented by folds, planar structures and lineations. Penetrative S_n foliation belongs to the first deformational episode (D_i) connected with metamorphism the investigated series underwent.

The first deformational episode D_1 is represented by scarce and hardly identifiable isoclinal folds occurring usually as relic fold closures (figs. 3, 4; pl. I, 1, 3) or intrafolial forms (pl. II, 1). Penetrative axial planar foliation S_1 is marked mostly metamorphic lamination which in fold limbs obliterates the prior stratification lamination S_0 . The latter is still recognizable in fold closures. An intersection of both the planar structures

* Institute of Geological Sciences, University of Wrocław, ul. Cybulskiego, 30, 50-205 Wrocław, Poland.

produces L_1 lineation also preserved merely in the hinge regions (pl. I, 2). The axes of F_1 folds are greatly dispersed because of their non-cylindrical forms and superimposition of younger deformations (fig. 5).

The second deformational episode D_2 is represented mostly by drag folds in metamorphic foliation S_1 (fig. 6). F_2 folds dominate in the investigated region and produce regional tectonic style of the Śnieżnik metamorphic unit except the Krowiarki Range. According to a geometric-structural classification (Jaroszewski 1974), the F_2 folds belong to both similar (pl. II, 2; IV, 2) and concentric (pl. III, 2) category. They were accomplished by flexure-slip folding (especially in leptite gneisses) and by slip folding dominating in mica schists (pl. III, 3). Crenulation cleavage (pl. II, 2) was developed in parallel to thetir axial planes. At intersections with S_1 surfaces it produces disninct lineation L_2 emphasized by fine wrinkling (pl. IV, 1), rodding (pl. III, 2), and boudins (pl. II, 2). The lineation L_2 rurs commonly parallel to F_2 mesofold axes (figs. 7, 8; pl. II, 4; IV, 1) or occasionally cuts them at low angles (up to 5°).

The features of D_2 mesostructures are compatible with those of the mapped Bzowiec macrofold. Having analysed sense f asymmetry of F_2 mesofolds (fig. 2; pl. II, 2, 3, 4; IV, 2) and relationship of S_1 and S_2 surfaces, one can state that the northwestern limb of the macrostructure is reversed limb of synform of the Bzowiec fold.

The third deformational episode D_3 is represented by Scarce and hardly recognizable mesostructures. These are open concentric folds having small amplitudes affecting S_1 planes with no axial planar structures associated. Superimposition of F_3 folds produces slight undulations in limbs of the Bzowiec fold (fig. 2, 11). Diagrams of orientation of S_1 and S_2 surfaces in the leptite gneisses show girdles centered in the field of F_3 axes (figs. 11, 12, 14). The F_3 folds are perpendicular to F_2 ones, which may suggest their genetic succession and close temporal connection (Don 1977). The effect of D_3 folding exerted upon the Bzowiec fold is surprisingly weak in contrary to the Krzyżnik fold (Don 1976a) and particularly the Góry Różane fold (Don 1972) recognized in the neighbouring Krowiarki Range.

The fourth deformational episode D_4 is represented by kink bands forming two conjugate sets (figs. 16, 17). They occur frequently in mica schists (pl. V, 2), more rarely in amphibolites (fig. 15) and leptite gneisses in which they are expressed best by axial planar fractures S_4 (pl. V, 1). On large scale the S_4 surfaces are represented by fault planes (fig. 2).

Undoubtedly younger than D_4 set are joints accompanied by kakirite zones (Kozłowska-Koch 1973) and cutting all the mentioned mesostructures (fig. 18). F_4 structures have their counterparts in deformed rocks of Upper Devonian age in the Kłodzko region (Wojciechowska 1973). The kakirite zones are cut obliquely by 280-300 m.y. old granodiorites of the Kłodzko-Złoty Stok massif (Don 1976b).

Translated by Andrzej Żelaźniewicz

PLANSZA I PLATE I

- 1. Przeguby izoklinalnych fałdów F_1 maskowanych przez penetratywną foliację S_1 , gnejsy leptytowe przewarstwiane łupkami łyszczykowymi. Skałka na zachodnim stoku wzgórza Bzowiec, północno-zachodnie skrzydło fałdu Bzowca Closures of F_1 isoclinal folds obscured by penetrative S_1 axial planar foliation; the folds are in leptite gneisses. Western slope of the Bzowiec Mt, northwestern limb of the Bzowiec fold
- 2. Fragment partii przegubowej fałdu F_1 z wyraźną lineacją powstałą z przecięcia S_1/S_0 Fragment of F_1 fold closure with discrete S_0/S_1 intersection lineation
- 3. Wypreparowane przeguby fałdów F_1 w otaczających łupkach łyszczykowych; zaznaczone powierzchnie S_0 i S_1 F_1 fold closure; in surroundig mica schists S_0 and S_1 surfaces are recognizable

Jerzy DON, Roman GOTOWAŁA – Analiza strukturalna fałdu Bzowca (metamorfik Śnieżnika – Sudety) Structural analysis of the Bzowiec fold (Śnieżnik metamorfic unit, Sudetes)

PLANSZA II PLATE II

1. Śródfoliacyjny fałd F_1 w laminie kwarcowo-skaleniowej łupku łyszczykowego. Widoczne wytarcie skrzydła brzusznego, drobne fałdki ciągnione na skrzydłach i ułożenie oczek kwarcowo-skaleniowych zgodne z osią fałdu. Skałka na południowo-wschodnim stoku wzgórza Bzowiec

Intrafolial F_1 fold in a quartzofeldspathic lamina of mica schist. Visible attenuation of lower limb, minute drag folds in both limbs, and quartzofeldspathic augen arranged in parallel with fold axis. Southeastern slope of the Bzowiec Mt

2. Fałd ciągniony F_2 w gnejsach leptytowych. W górnej partii fotografii widoczne fragmenty zbudinowane, dające lineację zgodną z osią fałdu. Wyraźna oddzielność zgodna z S_1 . Skałka na wschodnim stoku wzgórza Bzowiec, południowo-wschodnie skrzydło fałdu Bzowca

Drag fold of F_2 set in leptite gneisses. In upper part of the photo visible boudinized fragments producing a lineation parallel to the fold axis. Discrete S_1 surfaces. Eastern slope of the Bzowiec Mt, southeastern limb of the Bzowiec fold

- ³. Przegub fałdu F_2 typu symilar z kliważem S_2 zgodnym z dłuższym skrzydłem (lewa strona fotografii) Closure of F_2 fold of similar type; foliation parallel to longer limb (left side of photo)
- 4. Fałd ciągniony F₂ w gnejsach leptytowych. Lineacja zgodna z osią fałdu występuje w przegubowej partii i na krótszym skrzydle. Skałka na zachodnim stoku wzgórza Bzowiec, północno-zachodnie skrzydło fałdu Bzowca Drag fold of E set in laptite gnejsze. Lineacja parallel to the fold avis occurs in the bigge region and short limb. Western slope

Drag fold of F_2 set in leptite gneisses. Lineation parallel to the fold axis occurs in the hinge region and short limb. Western slope of the Bzowiec Mt, northwestern limb of the Bzowiec fold

GEOLOGIA SUDETICA VOL. XV, NR 2

Jerzy DON, Roman GOTOWAŁA – Analiza strukturalna fałdu Bzowca (metamorfik Śnieżnika – Sudety) Structural analysis of the Bzowiec fold (Śnieżnik metamorfic unit, Sudetes)

PLANSZA III PLATE III

- 1. Fałdek ciągniony F_2 w laminie kwarcowo-skaleniowej, łupek łyszczykowy. W prawym skraju fotografii prawdopodobny izoklinalny fałd F_1 . Całość ścinana strefą kakirytyzacji. Skałka na północnym stoku wzgórza Bzowiec, jądrowe partie synformy fałdu Bzowca F_2 drag fold in a quartzofeldspathic lamina of a mica schist. Supposed F_1 isoclinal fold visible at right-hand margin of the photo. The entire structure cut by kakiritization zone. Northern slope of the Bzowiec Mt, synform core of the Bzowiec fold
- Koncentryczne zafałdowanie (F₂) laminy kwarcowej w łupku łyszczykowym z rozwalcowanym oczkiem kwarcu w partii przegubowej, dającym typowy rodding zgodny z osią F₂. Skałka na wschodnim stoku wzgórza Bzowiec, partie jądrowe antyformy fałdu Bzowca

Concentric fold (F_2) in a quartzose lamina of a mica schist. Flattened quartz augen in the hinge region, producing typical rodding parallel to F_2 fold axis. Eastern slope of the Bzowiec Mt, core of antiform of the Bzowiec fold

3. Fałdek F₂ w laminie kwarcowo-skaleniowej, łupek łyszczykowy. Silnie zaznaczone ścinanic zgodne z powierzchnią osiową – kliważowy typ fałdowania. Skałka na wschodnim stoku wzgórza Bzowiec F₂ fold in a quartzofeldspathic lamina of a mica schist. Strong axial planar shearing-slip (cleavage) folding. Eastern slope of the Bzowiec Mt

GEOLOGIA SUDETICA VOL. XV, NR 2

PLANSZA III PLATE III

Jerzy DON, Roman GOTOWAŁA – Analiza strukturalna fałdu Bzowca (metamorfik Śnieżnika – Sudety) Structural analysis of the Bzowiec fold (Śnieżnik metamorfic unit, Sudetes)

PLANSZA IV PLATE IV

1. Otwarte koncentryczne zafałdowania (F_2) gnejsów leptytowych z silnie rozwiniętą lineacją L_2 , w dolnej partii fotografii zgodną z osiami fałdów, w górnej owijającą się dookoła osi. Skałka na wschodnim stoku wzgórza Bzowiec, południowo-wschodnie skrzydło synformy fałdu Bzowca

Open concentric folds (F_2) in the leptite gneisses. Strong axial lineation L_2 in lower part of the photo, curving around the fold axis as visible in the upper part of the photo. Eastern slope of the Bzowiec Mt, southeastern limb of synform of the Bzowiec fold

2. Asymetryczne fałdy F_2 drugiego i trzeciego rzędu, typu symilar z kliważem S_2 w powierzchniach osiowych, gnejs leptytowy. Skałka na wschodnim stoku wzgórza Bzowiec, południowo-wschodnie skrzydło synformy fałdu Bzowca

Asymmetrical F_2 folds of second and third order, similar type of folding with S_2 axial planar cleavage in the leptite gneisses. Eastern slope of the Bzowiec Mt, southeastern limb of synform of the Bzowiec fold

GEOLOGIA SUDETICA VOL. XV, NR 2

Jerzy DON, Roman GOTOWAŁA – Analiza strukturalna fałdu Bzowca (metamorfik Śnieżnika – Sudety) Structural analysis of the Bzowiec fold (Śnieżnik metamorfic unit, Sudetes)

PLANSZA V PLATE V

- 1. System sprzężonych spękań S_4 lokalnie przechodzących w kliważ spękaniowy. Lineacja z przecięcia S_4/S_1 w układzie diagonalnym do L_2 . Skałka gnejsów leptytowych 300 m na południowy wschód od skrzyżowania dróg na północnym końcu wsi Skrzynka System of conjugate joints S_4 passing into fracture cleavage. S_4/S_1 intersection lineation L_4 diagonal to L_2 lineation. Leptite gueiszes exposed 300 m southeast of the cross-roads in northern part of the village of Skrzynka
- 2. Cprzężone ".ldki załamowe F_4 w lupku łyszczykowym. Skałka na północnym stoku wzgórza Bzowiec, partie jądrowe synformy fałdu B_{10} or c_{10}
- Conjugate and folds of F4 set in a mica schist. Northern slope of the Bzowiec Mt, synform core of the Bzowiec fold

Jerzy DON, Roman GOTOWAŁA – Analiza strukturalna fałdu Bzowca (metamorfik Śnieżnika – Sudety) Structural analysis of the Bzowiec fold (Śnieżnik metamorfic unit, Sudetes)