New paleontological data from the Turonian and Coniacian of the Opole Trough (SW Poland)

Robert Niedźwiedzki¹ & Agata Godlewsk¹

¹Wrocław University, Institute of Geological Sciences, ul. Cybulskiego 30, 50-205 Wrocław, Poland; e-mail: rnied@ing.uni.wroc.pl
²Arcadis Ekokonrem Sp. z o.o., ul. Tarnogajska 18, 50-512 Wrocław, Poland; e-mail: a.godlewka@arcadis.pl

Key words: solitary corals, nautilids, echinoids, Upper Cretaceous, Silesia.

Abstract This report is on the first Micrabacidae (Micrabacia sp.) solitary corals to have been found in the Upper Cretaceous deposits of the Opole Trough. We also present descriptions of the first nautilids (Cymatoeeras sp.; smooth-shelled Nautilidae), regular echinoids (Gauhierta radula (Sorqinet, 1850)) and solitary corals (Parasimilia sp.) to have been found in the Lower Coniacian of the Opole region.

INTRODUCTION

The Cretaceous sedimentary rocks in the Opole Trough range in age from the Middle Cenomanian to the Middle Coniacian (Tarkowski, 1991; Walaszczyk, 1992; Walaszczyk & Wood, 1998; Niedźwiedzki & Kalina, 2003). The best exposures occur in the vicinity of Opole (Fig. 1). The Turonian and Lower Coniacian deposits are represented predominantly by marls and marly limestones, while the Cenomanian and Middle Coniacian units are composed of sandstones and mudstones. An informal lithostratigraphic subdivision of the Turonian and Lower Coniacian (Fig. 2) and the paleoenvironment of the Opole Basin were described by Alexandrowicz & Radwan (1973), Tarkowski (1991) and Kędzierski & Uchman (2001). The sedimentation of the Opole Cretaceous took place in an epicontinental sea, with the maximum floodings during the Middle Turonian and Early Coniacian (Kędzierski & Uchman, 2001; Niedźwiedzki & Kalina, 2003).

The Upper Cretaceous deposits of the Opole Trough contain a rich marine macrofauna. However, there is variability in the macrofaunal frequency in the succession. Ammonoids, brachiopods (Articulata) and irregular echinoids commonly occur in distinct fossiliferous horizons that are especially numerous in the Marly Limestones Unit, while the other parts of the succession have a relatively low fossil content. The biostratigraphy of the Opole sections is based on a high resolution inoceramid zonation (Walaszczyk, 1988, 1992; and revision of the inoceramid zonation by Walaszczyk & Wood, 1998; Walaszczyk & Cobban, 2000). Other common macrofossils in these deposits include sponges and the bivalve genus Spondylus Linnaeus, 1758 (for a list of the fossils see: Roemer, 1870; Leonhard, 1898; Tarkowski, 1991). Encrusting forms are common but poorly studied. We found inoceramid shells and Micraster tests encrusted by serpulids (e.g. Spiorbris sp., Fig. 3.3), bryozoans (mostly Cheilostomata), and oysters (see also Godlewsk¹, 2005).

The other groups of macrofauna (corals, crinoids, gastropods, nautiloids, regular echinoids and sharks) in these rocks were described as rare and taxonomically indistinct. The solitary coral Parasimilia centralis is the most common of the Scleractinia present (Mantell 1822). The corals of the Opole Trough were first described from the Turonian deposits by Roemer (1870) and Wegener (1913). Their precise stratigraphic location is unknown. Leonhard (1898) reported P. centralis from the upper part of the Turonian. A single specimen of the new species Stylotrochus volzi Leonhard, 1898, was described by Leonhard (1898) from the Middle Turonian of the Groszowice Quarry. The only representatives of the colonial corals in the Opole Basin are a single fragment of Isastrea sp. (Roemer, 1870), and Pleurocora felicis Wegener, 1913 (Wegener, 1913). Only two species of nautilids occur in the Opole Trough. There are few specimens of Deltocymatoceras rugatums (Fritsch & Schloenbach, 1872) and Entrepheoceras sublaevigatum (d’Orbigny, 1850), but their stratigraphic extent is the whole of the Turonian succession (Roemer, 1870; Leonhard, 1898; Tar-
The regular echinoids from Opole were first described by Schlüter (1892). He found a complete echinoid test, and described it as a new species, *Stereocephalites silesiacus* Schlüter (1892). He (1883) also mentioned finding *Gauthieria radiata* (Sorignet, 1850) in the Upper Turonian deposits of Opole. The specimen of *Cymatoceras* sp. and the nautilids, unidentified at the generic level (CAN/ODI-1), were found by A. Kin in the Lower Marls Unit (Middle Turonian). We found rare spines of regular echinoids, unidentified at the generic level, throughout the Turonian and Lower Coniacian succession, and only a single complete echinoid test (*Gauthieria radiata*). The latter comes from the Upper Argillaceous Marls Unit. This is the first finding of the mentioned species in the Lower Coniacian of the Opole Basin.

**TAXONOMIC DESCRIPTION**

The specimens used in this study are housed at the Geological Museum of the Institute of Geological Sciences of Wrocław University (MGUWr), the Institute of Paleobiology of the Polish Academy of Sciences, Warsaw (ZPAL), and the Pawłowscy Memorial Museum of Natural History, Łódź (CAN).

Phylum Cnidaria Hatscheck, 1888  
Class Anthozoa Ehrenberg, 1834  
Order Scleractinia Bourne, 1900  
Family Microabaciidae Vaughan, 1905  
Genus *Microabacia* Milne-Edwards & Haime, 1849

*Microabacia* sp.  
(Fig. 3.1)

**Material.** Three well-preserved specimens: MGUWr 5555s; ZPAL H.II/4; ZPAL H.II/5

**Description.** Corallum solitary, cupuloid and circular in outline with a highly convex oral surface. Base slightly concaave, up to 9.8 mm in diameter (ZPAL H.II/4; in MGUWr 5555s, 8 mm in diameter; in ZPAL H.II/5, 6.8 mm in diameter). Horizontal wall-forming perforate basal disk. Co-stae alternating with septa, equally wide (no cycle larger than any other), slightly narrower than intercostal loculi, each ornamented with a row of rounded granules. Septa imperforate, hexamerally arranged in 5 complete cycles (96 septa). Septal faces covered by granules aligned in rows. All septal edges entire, without septal spines. Fossa elongate, filled up with sediment (no details of columella are recognizable). Calicular diameter/height ratio of 2.1 (ZPAL H.II/5) to 2.7 (ZPAL H.II/4).

**Occurrence of genus.** The genus *Microabacia* is cosmopolitan in distribution, ranging from the Cretaceous to the Eocene (Cairns, 1989). The type species *Microabacia coronula* (Goldfuss, 1826) is from the Cenomanian and Turonian of
Family Caryophylliidae Gray, 1847
Genus Parasmilia Milne-Edwards & Haime, 1848

Parasmilia sp.
(Fig. 3.2.)

Material. Three fragmentarily preserved specimens:
MGUWr 5556/1s - 5556/3s

Description. Coralium solitary, trochoid, 11 mm in diameter. Columella trabecular.

Occurrence of genus. This genus ranges in age from Cretaceous to Miocene and occurs in the Upper Cretaceous deposits of the USA, England, Denmark, Germany and Poland (e.g. Andert, 1934; Bayer et al., 1956; Bernecker & Weidlich, 2003; Kommritz & Hillmer, 2004). Parasmilia centralis occurs in the Turonian of the North Sudetic Basin (Scupin, 1912–1913).

Germany and England and the Cenomanian of the Netherlands. This species also occurs in the lowermost Turonian of the North Sudetic Basin (Scupin, 1912–1913). Other Cretaceous species have been described from the USA, Mexico and Europe (Bayer et al., 1956; Tröger, 2003; Bernecker & Weidlich, 2003; Ifrim et al., 2004).

Parasmilia sp.
(Fig. 3.2.)

Material. Three fragmentarily preserved specimens:
MGUWr 5556/1s - 5556/3s
Fig. 3. Solitary corals and nautilids from the Opole Trough. 1. *Micrabacia* sp. 1a – distal view; 1b – proximal view. MGUWr 5555s. Odra Quarry; Middle Turonian (Lower Argillaceous Marls Unit). Scale bar: 0.5 cm. 2. *Parasmilia* sp. MGUWr 5556/1s. Lateral view. Folwark Quarry; Lower Coniacian (Upper Argillaceous Marls Unit). Scale bar 1 cm. 3. *Spirorbis* sp. MGUWr 5557s. Folwark Quarry; Middle Turonian (Lower Marls Unit). Scale bar 1 cm. 4. *Cymatoceras* sp. 4a – lateral view; 4b – ventral view. CAN/OD1-2. Odra Quarry; Middle Turonian (Lower Marls Unit). Scale bar 3 cm.


**Phylum Mollusca** Linne, 1758  
Class Cephalopoda Cuvier, 1797  
Subclass Nautiloidea Agassiz, 1848  
Order Nautilidae de Blainville, 1825  
Family Nautilidae de Blainville, 1825  
Genus *Cymatoceras* Hyatt, 1884

*Cymatoceras* sp.  
(Fig. 3,4.)

**Material.** One relatively well-preserved mould: CAN/OD1-2

**Description.** Specimen diameter 114 mm; whorl height 76 mm and whorl width 49 mm. Mould very involute. Whorl section subrectangular, higher than wide. Flanks slightly convex. Maximum breadth on the lower flanks close to the umbilical shoulder. Venter rounded and relatively narrow. Fine ribs only partially visible on the venter and upper part of the flank. Ribs curve backwards.

**Remarks.** Species determination is not possible due to the poor preservation of the ornamentation and the suture.  

**Occurrence of genus.** The genus is cosmopolitan in distribution, ranging from the Upper Jurassic into the Oligocene (Kummel, 1964). Cretaceous species occur in Europe, Sakhalin (Far East Russia), Japan and the USA (Kummel, 1964; Miller & Garner, 1962; Wilmens & Yazykova, 2003).

Nautilidae sp. et gen. indet.  
(Fig. 4,1.)

**Material.** Two poorly preserved moulds compressed by compaction: MGUWr 5559/1; MGUWr 5559/2.

**Description.** Diameter of MGUWr 5559/1 60 mm; whorl height (H) 43 mm and whorl width (W) 27 mm. MGUWr 5559/2 deformed and compressed. Moulds involute, sub-globular and smooth. Whorl section subrectangular, venter slightly rounded and not very broad. Suture not visible.

**Remarks.** Due to the poor preservation, genus determination is not possible. The described specimens differ from *Entrepheceras* in having a narrow and rounded venter (W/H = 0.63), and differ from *Deltocymatoceras* and *Cymatoceras* in lacking ornamentation and in having a narrow whorl section.

**Phylum Echinodermata** Bruguiere, 1791  
Class Echinoidea Leske, 1778  
Order Phymosomatoida Mortensen, 1904  
Family Phymosomatidae Pomel, 1883  
Genus *Gauthieria* Lambert, 1888

*Gauthieria radiata* (Sorignet, 1850)  
(Fig. 4,2.)

1850 *Cyphosoma radiatum* Sorignet, p.28

---

**Fig. 4.** Nautilid and echinoid from the Opole Trough. 1. Smooth-shelled Nautilidae. 1a – lateral view, 1b – ventral view. MGUWr 5559/1s. Folwark Quarry; Lower Coniacian (Upper Argillaceous Marls Unit). Scale bar 3 cm. 2. *Gauthieria radiata* (Sorignet, 1850). 2a – aboral view; 2b – oral view. MGUWr 5560s. Folwark Quarry; Lower Coniacian (Upper Argillaceous Marls Unit). Scale bar 1 cm.
1877 Cypsooma radiatum Frič, p. 147, Fig. 151
1934 Gauthieria radiata Andert, p. 73
1996 Gauthieria radiata Smith & Wright, p. 290-294, Fig. 101 (1-14), 122 (1, 6-12), 103 (4-6)

Material. One well-preserved specimen, slightly compressed by compaction: MGUWr 5560s.

Description. Only corona preserved; spines and lantern, and apical, periproct and peristomial plates lost. Test diameter 16 mm. Test low and flattened with small peristome. Intermuralacra narrow, 1.25 times as wide as the ambulacra. Ambulacral and interambulacral plates each have a non-contiguous, circular, prominent areole and a large imperforate primary tubercle surrounded by a small mamelon. Tubercles become rapidly smaller towards the periproct and the peristome. Areoles of interamb plates marked by a series of short radial ribs. Primary tubercles crenulate, forming regular series.

Occurrence. Turonian to Early Santonian of Great Britain, Turonian of France, Germany, Poland, Ukraine, Russia and Algeria (Frič, 1877; Andert, 1934; Krymgolc, 1974; Smith & Wright, 1996). Gauthieria radiata occurs in the lowermost Turonian of the North Sudetic Basin (Scupin, 1912-1913).

CONCLUSIONS

Solitary corals of the Micrabaciidae were found in the Middle Turonian. This is the first published record of this family from the Opole Trough. Parasimilis sp. solitary corals, nautilids, and regular echinoids Gauthieria radiata were found for the first time in the Lower Coniacian of the Opole region. The echinoids and corals represent autochthonous faunas, and the latter point to warm water habitat. The presence of nautilids is also consistent with such an environment, however, the bad state of preservation and scarce occurrence do not allow to conclude whether they were autochthonous or allochthonous in the Opole Trough.

Acknowledgments

We would like to express our warm thanks to the authorities and workers of the Góra¿d¿e Cement S.A. (Folwark Quarry) and Cementownia Odra S.A. (Odra Quarry) for their help during our investigations. We would like to thank Dr. J. Jagt (Natuurhistorisch Museum Maastricht), Dr. E. Zazykova (Opol University) and Dr. J. Stolarski (Institute of Paleobiology, Polish Academy of Sciences) for their help in identifying the fauna, and Prof. Dr. Hab. R. Marcinowski (Warsaw University) and Dr. M. Machalski (Institute of Paleobiology, Polish Academy of Sciences) for granting access to valuable bibliographic data. The valuable comments of Dr. M. Salamon (University of Silesia), Dr. J. Stolarski and Dr. Hab. Prof. I. Walaszczyk (Warsaw University) improved the contents of the paper. We would also like to thank A. Kin, M.Sc. who loaned the nautilid specimens. The investigations benefited from the financial support of the Institute of Geological Sciences, University of Wroclaw (grant 2022/W/ING/05-28).

REFERENCES


CAIRNS, S. D., 1989. A revision of the ahermatypic Scleractinia of the Philippine Islands and adjacent waters, Part 1: Fungia


JAGT, J.W.M. & SALAMON, M.A., in press. Late Cretaceous Bourguetiercinid crinoids from southern Poland; preliminary observations. Scripta Geologica.


