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THE VELOCITY ORIENTED APPROACH REVISITED

MAREK NAWALANY1, WOUTER ZIJL2

Abstract. A great deal of hydrogeological situations requires an extremely accurate calculation of the 3-dimensional groundwater
discharge rates in the subsoil. Examples are: hydrology of wetlands, water balances of aquatic ecosystems depending on groundwater
recharge, river-groundwater interaction, advective transport of pollution underneath waste disposal sites, particle trajectories in
aquifer-aquitard systems with contrasting heterogeneities and many others. Numerical determination of the vertical groundwater velocity is
a notoriously difficult problem. In nature this component may be two or three orders of magnitude smaller than the horizontal velocity
components. In such cases application of Darcy’s law to the numerically calculated hydraulic heads obtained from a finite difference or finite
element model may lead to relatively inaccurate vertical velocities. More specifically, when estimating vertical velocity components in cases
where the Dupuit approximation – negligible vertical head gradient – holds, numerical differentiation of hydraulic heads yields zero vertical
velocity. In the 1980s of the last century Zijl and Nawalany proposed to invert the order of calculating the velocity field by eliminating
the head from Darcy’s law and to consider the Darcy velocity as the primary variable. For 2-dimensional flow this was already common
practice and the challenge was a 3-dimensional extension, which was called the Velocity Oriented Approach (VOA). In two dimensions such
methods were conventionally based on a stream function as primary variable. However, at that time application of a 3D stream function was
not feasible and, therefore, the Darcy velocity itself was considered as the primary variable. This approach has been proven to yield a high
accuracy for all three components of the specific discharge, including the relatively small vertical component, especially in cases where
the subsoil is smoothly heterogeneous in the horizontal directions. In the 1990s the mixed-hybrid finite element method was developed. The
physical interpretation of this method shows the way how to liberate the VOA from its smoothness requirement by introduction of a practical
applicable 3D stream function. In conclusion, the velocity oriented approach indicates a change in paradigm regarding the accurate
calculation of specific discharge in groundwater flow.
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INTRODUCTION

A great deal of hydrogeological situations requires an ex-
tremely accurate quantification of the 3-dimensional ground-
water flow velocity (Darcy velocity, specific discharge, flux
density) in the subsoil. Examples are: hydrology of wetlands,
water balances of aquatic ecosystems depending on ground-
water recharge, river-groundwater interaction, advective
transport of pollution underneath waste disposal sites, particle
trajectories in aquifer-aquitard systems with contrasting
heterogeneities, and many others. A notoriously difficult
problem is the numerical determination of the vertical compo-

nent of the groundwater velocity. In nature this component
may be two or even three orders of magnitude smaller than the
horizontal velocity components. In such cases application of
Darcy’s law to the numerically calculated hydraulic heads ob-
tained from a finite element or finite difference model may
lead to relatively inaccurate vertical velocity components.
More specifically, when estimating the vertical flow compo-
nent in cases where the Dupuit approximation – negligible
vertical head gradient – holds, numerical differentiation of hy-
draulic head yields zero vertical flow rate.
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THE VELOCITY ORIENTED APPROACH

IN TWO DIMENSIONS: STREAM FUNCTION BASED

Let us consider 2-dimensional groundwater flow through
a vertical cross section of the subsurface. The relation be-
tween the specific discharge (Darcy velocity) and the hy-
draulic head is given by Darcy’s law
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where:
�( , )x z – hydraulic head,
q x z q x zx z( , ), ( , ) – components of the Darcy velocity in respec-

tively the horizontal x direction and the verti-
cal z direction.

Darcy’s law [1] is well known. It is less known that
Darcy’s law is mathematically equivalent to a formulation
from which the head is eliminated
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The mathematical equivalence of equation [2] – in which
the head does not occur – to Darcy’s law [1] – in which the
head occurs – may be considered as the fundamental princi-
ple upon which the velocity oriented approach (VOA) is
based.

In 2-dimensional flow the two Darcy velocities are con-
ventionally eliminated by introduction of a stream function

� �� x z, defined as
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Thanks to the stream function, the continuity equation (in
which the head does not occur)
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is honored automatically. This follows immediately from
substitution of equations [3] into equation [4] using the
identity � � � � � �2 2f x y f y x/ /
 for f � �. (The equiva-
lence of equation [1] to equation [2] is based on this iden-
tity for f � �.) Substitution of equations [3] into the equiva-
lent form of Darcy’s law [2] yields the equation for the
stream function
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Equation [5] can be solved by a conventional finite ele-
ment model, in which the stream functions are assigned to
the nodes of a finite element mesh (grid), for instance a mesh
with triangular 2-cells. After having determined the stream
functions in the nodes, the Darcy velocities – and hence the
groundwater flow rates (fluxes) through the edges connect-
ing the nodes – can be determined using equations [3].
Knowing the Darcy velocities, the heads in the centers of the
grid cells (e.g. in the centers of the triangles) can be deter-
mined by integration of Darcy’s law [1]; see, for instance,
(Mohammed, 2009; Mohammed et al., 2009). However, for
many practical applications it is preferable to know the heads
in the nodes of the mesh. The nodal heads follow directly –
without calculation of the Darcy velocities – from the fol-
lowing well known equation obtained from substitution of
Darcy’s law [1] into continuity equation [4]
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In a number of situations the solution of equation [6.1]
may be such that the head is almost independent from the
vertical direction; i.e., �� �/ z � 0. In such cases the vertical
Darcy velocity cannot be calculated accurately from Darcy’s
law [1.2]. However, determination by the VOA based on
equations [2] and [4] will do the job correctly.

Equation [6] for the head has the same form as equation
[5] for the stream function. In the 1980s the finite element
method was already a well established – and at that time pop-
ular – technique for determination of the head by solving
equation [6]. Therefore, the stream function formulation
could be implemented in a relatively simple way.

THE VELOCITY ORIENTED APPROACH

IN THREE DIMENSIONS: STREAM FUNCTION BASED

In the 1980s Nawalany and Zijl started to consider
3-dimensional groundwater flow in the context of what
they called Flow Systems Analysis – also referred to as
“gravitational systems of groundwater flow” (Tóth, 2009).
In 3-dimensional flow systems the small vertical velocity
component plays an important role (Nawalany, 1986a, b;
Zijl et al., 1987; Nawalany, 1990). In order to focus on an
accurate determination of the Darcy velocities, it was pro-
posed to base 3-dimensional flow calculation on the equiv-
alent form of Darcy’s law from which the head is elimi-
nated, similar to what was common practice for
2-dimensional flow (section 1.1). This extension to
3-dimensional flow was called the velocity oriented ap-
proach (VOA). In a more or less similar, but mathemati-
cally more complex way than presented in section 1.1,
a 3-dimensional stream function can be introduced (see Ap-
pendix A). Moreover, like in the 2-dimensional case, it is
“better” for a number of applications to determine the head
directly from the 3-dimensional head equation
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In section 1.1 we have shown the similarity between
2-dimensional stream function equation [5] and
2-dimensional head equation [6.1]. Unfortunately, such
a similarity does not exist for 3-dimensional flow. The
3-dimensional stream function equation (Appendix A,
equation [A.1]) has not the same form as the 3-dimensional
head equation [6.2]. As a consequence, the well known finite
element techniques for the determination of the head cannot
be applied in a simple way to the stream function formulation.

THE VELOCITY ORIENTED APPROACH

IN THREE DIMENSIONS: VELOCITY BASED

To overcome this disadvantage of the 3-dimensional
stream function, not the three stream function components
� x , � y , � z , but the two horizontal head gradients
e q kx x h� / , e q ky y h� / and the vertical Darcy velocity qz

have been chosen as the primary variables. For a perfectly
layered aquifer-aquitard system in which the hydraulic con-
ductivities k k k zx y h� � ( ) (horizontal) and k zz ( ) (vertical)
vary only in the vertical z direction, the equations to be
solved are
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The above equations [7] have the same form as equation
[6.2] for the head, which means that standard finite
element techniques can be applied, not only to calculate the
head (equation [6.2]), but also to calculate the “velocity
components” ex , ey and q z in the nodes of a finite element
mesh (Nawalany, 1986a, b, 1990, 1992).

Good results have been obtained with this version of the
velocity oriented approach (VOA) in combination with
a conventional node-based finite element model (in which
the head values are assigned the nodes of the mesh). It has
been proven to yield a high accuracy for all three
components of the specific discharge, including the
relatively small vertical component; see Figures 1–3. In
addition, this VOA version has successfully been used for
asymptotic expansions to analyze the Dupuit approximation
and its consequences for the relatively small vertical
groundwater flow rates in aquifer-aquitard systems (Zijl,
Nawalany, 1993).

It is important to note that equation [6.2] holds for all
types of heterogeneity pattern of the hydraulic conductivity,
while equations [7] hold only for perfectly layered patterns.
To account for general heterogeneity additional terms can be
added to equations [7]. However in these terms horizontal
derivatives of the conductivities occur. This smoothness re-
quirement limits application of the velocity oriented ap-
proach to aquifer-aquitard systems that vary smoothly in the
horizontal directions. The remedy to overcome this disad-
vantage is the development of finite element or finite
difference techniques for the 3D stream function that differ
from the techniques used for the head. On the other hand, we
want to use as much as possible the already available
discretization techniques.

Until now we have tacitly assumed that quantities like
head, stream function and velocity components have to be
assigned to the nodes of a mesh (grid). In the 2000s the
authors of this paper discovered that, if the values of the
3-dimensional stream function are not assigned to the
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Fig. 1. Trajectories of water particles; (dashed line) analytical solution,

(solid line) finite element solution of velocity oriented approach

A – 605 nodes (121 horizontal, 5 vertical); B – 67240 nodes (1681 horizontal, 40 vertical)



nodes, but to the edges (lines connecting nodes), they can
be calculated in a relatively simple way. Moreover, it
turned out that this edge based 3-dimensional stream
function can be considered as a “missing links” in the well
known block centered finite difference method (also called
finite volume method) and in the (less known, but not

unknown) mixed hybrid finite element method (Zijl,
Nawalany, 2004).

However, before explaining this stream function version
of the velocity oriented approach in section 3, we will first
consider the finite volume method and the related mixed hy-
brid finite element method in section 2.
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Fig. 2. A. VOA trajectories for groundwater flow partly induced by head differences between the vertical boundaries and partly

induced by a pumping well. Left: finite element model with 300 nodes; right: finite element model with 1200 nodes. B. Classical

head-based trajectories for groundwater flow partly induced by head differences between the vertical boundaries and partly

induced by a pumping well. Left: FEM 300 nodes; right: FEM 1200 nodes. The classical approach is heavily dependent on

the discretization, while the VOA is not (see Fig. 2A; also see Figures 1A, B)

Fig. 3. Well located below a semi-pervious layer can intercept some trajectories (anisotropy ratio 1:100)



FINITE VOLUME AND FINITE FACE METHODS

During the 1990s the mixed-hybrid finite element
method was introduced in hydrogeological practice
(Kaasschieter, 1990; Kaasschieter, Huijben, 1992;
Trykozko, 1997; Trykozko et al., 2004). Unlike the block
centered finite difference method (finite volume method),
the mixed-hybrid finite element method can handle
non-rectangular grid volumes and general anisotropy of the
hydraulic conductivity (anisotropy in which the principal
conductivities are not aligned with Cartesian grid block di-
rections). Unfortunately, almost without exception, the
mixed hybrid finite element method is explained in an overly
mathematical way, which impedes its acceptance by the hy-
drogeological community. To “rehabilitate” this excellent
method, an alternative introduction to the finite volume
method and the mixed hybrid finite element method based
on relatively simple algebra is presented in respectively sec-
tions 2.1 and 2.2.

FINITE VOLUME METHOD

We consider a grid (mesh) with volumes (not necessarily
rectangular grid blocks), faces (each face connects two vol-
umes), edges (connection two nodes) and nodes. On this grid
the continuity equation is written as a matrix-vector equation
(in short-hand notation DQ = 0; see Appendix B for more de-
tails). In a more or less similar way we can also write
Darcy’s law as a matrix-vector equation (in short-hand nota-
tion D QT �  �� � ; for details see Appendix B). Vector Q
contains the flow rates (fluxes) through the faces, vector �

contains the heads in the centers of the grid volumes, and
vector � represents the heads on the boundary of the model-
ing domain (and in the wells). Matrix � is the impedance ma-
trix (or resistance matrix) containing the hydraulic re-
sistances experienced by the groundwater flux through the
faces under the influence of the head differences between the
faces.

In the block centered finite difference method (finite
volume method), the grid volumes are rectangular blocks
with edges in the x, y and z directions; also the principal
axes of the conductivity matrix are in the x, y and z

directions. In that case the hydraulic resistance experienced
by the flux through a face is only influenced by the head
difference between that face, not by head differences
between other faces. As a result impedance matrix � is
a diagonal matrix. Its inverse, �

–1, is also a diagonal
matrix; each components is equal to the well known
harmonic average of the two conductivities in the grid
block joining a face. In that case we can easily determine
system matrix M = D�

–1DT and right-hand side vector
B = D�

–1
� to find the system of algebraic equations

M� = B (for more details see Appendix B). The solution
of this system can be obtained by well established
numerical techniques (for instance, preconditioned

conjugate gradients; Kaasschieter, 1988). At present this
method is extremely well known (although the derivation
of the equations is generally presented in a different way).
For instance, the popular groundwater flow package
MODFLOW is based on it.

FINITE FACE METHOD

If the grid volumes are not rectangular, or if the
principal directions of the conductivity are not aligned with
the edge directions, impedance matrix � can be determined
by a simple Galerkin method (Zijl, Nawalany, 2004; Zijl,
2005). However, in this case the impedance matrix is no
longer a diagonal matrix. As a consequence, it is impossible
from a computational point of view to determine system
matrix M and right-hand side vector B, except if the
modeling domain is partitioned into only a few volumes.
For a domain with one grid volume the head in this volume
center can be calculated in a simple way. This way we can
find a relation between the six face-based fluxes and the six
face centered heads (see Appendix B). Having found this
relation we consider a domain partitioned into many such
“one-grid – volume-domains”. Requiring continuity of
fluxes and heads at the faces, we end up with a linear
system of algebraic equations for the heads in the
face centers, from which the heads can be solved by well
established numerical techniques (for instance, pre-
conditioned conjugate gradients; Kaasschieter, 1988;
1990). For more details see Appendix B.

This method has successfully been applied in hydrogeo-
logy by Kaasschieter, Huijben (1992) and Trykozko
(Trykozko, 1997; Trykozko et al., 2004); see Figure 4.

Unfortunately, in the literature this method is, almost
without exception, presented in an overly mathematical way,
which impedes acceptation by the hydrogeological commu-
nity. The generally accepted name of the method, “mixed
hybrid finite element method”, reflects its history of “mathe-
matical discovery”. To a hydrogeologist who wants to be
able to communicate with the “mixed hybrid finite element
community,” it is advised read a clear introduction to
the generally accepted mathematical framework; for in-
stance the introduction presented by Kaasschieter (Kaas-
schieter 1990; Kaasschieter, Huijben, 1992). In fact, the
name mixed hybrid finite element method is a misnomer, be-
cause a mixed method is a method that solves both the head
and the Darcy velocity simultaneously. However, as we have
seen above, the mixed hybrid finite element method solves
the heads in the centers of the finite faces (in the conven-
tional “mathematical presentation” these heads are called
the “Lagrange multipliers”). Only after having solved the
Lagrange multipliers (i.e., the heads) the velocities are deter-
mined from these heads. As has been shown by our
above-presented much more simple alternative introduction
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(also see Appendix B), a better name would be face centered
finite element method, or finite face method.

If the grid volumes are rectangular blocks with edges in
the x, y and z directions and if also the principal axes of the
conductivity matrix are in the x, y and z directions, the finite
volume method is generally applied. However, the finite
face method could be applied as an alternative. The two
methods are very different from an algorithmic point of view
(block centered vs. face centered). Also from an algebraic
point of view the two methods differ, because the finite

volume method is based on a finite difference impedance
matrix, while the finite face method (or mixed hybrid finite
element method) is based on a Galerkin impedance matrix.
However, it has been proven by Weiser and Wheeler (1988)
that, if the grid volumes are rectangular blocks with
conductivities along the x, y and z directions, the finite
difference impedance is a good approximation of the
Galerkin impedance. Therefore, in this case the finite
volume method will yield almost the same solution as the
finite face method.

VELOCITY ORIENTED APPROACH

IN THREE DIMENSIONS: STREAM FUNCTION BASED

The above-presented interpretation of the finite volume
method and the finite face method (mixed hybrid finite ele-
ment method) brings us in the right position to base the ve-
locity oriented approach (VOA) on the 3-dimensional stream
function. As has been emphasized in section 1, the velocity
oriented approach is based on elimination of the head from
Darcy’s law. To do so we need a matrix (denoted as RT) with
the property that it eliminates the head from the discretized
version of Darcy’s Law (see Appendix B). In addition we in-
troduce a vector of edge based stream functions � such that
Q = –R�(in analogy with equation [3]). Thanks to the
stream function the continuity equation (inflow = outflow) is
honored automatically for each grid volume. The “discov-
ery” was that the stream function values had not to be as-
signed to the nodes of the grid, as conventional, but to the
edges. Finally, the discretized equation for the edge based
stream function is

RT
�R� = RT

� . [8]

For an explanation of the meaning of matrix R see Appendix C.

With a Galerkin-based impedance matrix this version of
the VOA is equivalent to the finite face method (i.e., the
mixed hybrid finite element method). For more details see
the original introduction to the VOA by Zijl and Nawalany
(2004). This VOA version has been used with the

Galerkin-based impedance matrix by Zijl and Nawalany
(2004) for generally shaped grid volumes and general aniso-
tropy. This VOA version has also been used with the finite
difference impedance matrix by Mohammed (2009); also see
(Mohammed et al., 2009). In this case the method is equiva-
lent to the finite volume method (MODFLOW, say).

As an example we consider 2-dimensional flow to a fully
penetrating well. The 3-dimensional flow domain has rela-
tively large dimensions in the horizontal directions, but has
a thickness equal to only one edge length in the vertical di-
rection. The grid consists of 225 grid blocks in 1 layer with
15 rows and 15 columns. The layer thickness equals 1 m and
the grid spacing in the horizontal directions equals 10 m.
A well is situated in the central grid block with an assumed
flow rate of Q = 100 m3/day (see Fig. 5). Half of this flow
rate is abstracted from the top face and half of is abstracted
from the bottom face of the well grid block. Head bound-
ary conditions were derived from the exact solution
� � �� Q rln / 2 , where r x y� 	( ) /2 2 1 2 . The system of linear
algebraic equations was solved by a conjugate gradient
method with diagonal preconditioning.

In section 1.1 authors have shown that a 2-dimensional
stream function honors the continuity equation automati-
cally. This means that for each internal grid block the inflow
equals the outflow. Nevertheless, wells can be modeled
by the 2-dimensional stream function � � �� Q / 2 . Here � is
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Fig. 4. Waste disposal with horizontal pumping and injection wells for hydraulic isolation (after Trykozko, 1997)



the angular coordinate of a circular coordinate system with
0 2� �� �. This stream function equals 0 (zero) at � = 0 and
Q at � �� 2 . As a consequence, both from the side y� 0 and
from the side y� 0 the modeling domain is bounded by the
positive x axis, with continuity of the flow velocity at y � 0
as boundary condition. Boundary conditions on such “cuts”
in the modeling domain may be considered as a disadvantage
of the stream function method, especially if there are many
wells in the modeling domain. This disadvantage is miti-
gated by the introduction of the 3D stream function. In this

case there is no need for cuts (internal boundaries), because
the nonzero flow into or out of the well grid block is ar-
ranged via the third dimension (via the well grid block’s top
and bottom face). This example also demonstrated that the
3D stream function differs from the 2D stream function, and
that the stream function method can be used to simulate
wells and other complex situations. For more details of this
particular example and of other examples see Mohammed
(2009) and Mohammed et al. (2009).

SUMMARY, CONCLUSION AND FUTURE WORK

Although well developed, theoretically sound and
applicable to complex subsoil conditions (3-dimensional
heterogeneity and anisotropy of rocks), the velocity oriented
approach (VOA) still does not easily find its way in general
hydrogeological practice. One of the reasons might be that the
mixed hybrid finite element method, to which the VOA is
related, is generally presented in a mathematical terminology
that is almost incomprehensible to practical hydrogeologists
(see section 2.2). The authors have shown that a much more
comprehensible explanation is possible, which open the way
to greater acceptance: the VOA deserves it.

On one hand the VOA promises to keep continuity and
sufficient accuracy of the Darcy velocity in all three
dimensions once the equations for the 3D stream function are
solved. Applications that require a very accurate numerical
estimation of relatively small vertical velocities, or require
that the continuity equation is honored exactly, are becoming
more and more important. Subtle water fluxes that need to be
estimated in eco-hydrological studies when assessing
through-flows and mass transport within wetlands, or highly
accurate calculations of inverse trajectories needed when
trying to detect unknown sources of groundwater pollution are

examples in which the VOA might offer the expected
solution.

An additional promise of the VOA is that its equations are
linear in the impedivities (the inverses of the hydraulic con-
ductivities). As has been shown and exemplified by Moham-
med (2009) this offers possibilities for direct inverse model-
ing; that is determination of hydraulic conductivities by solv-
ing a linear system of algebraic equations for the impedivities.

Coming back to what has been mentioned above, until re-
cently the VOA, when applied to complex hydrogeological
situations, has been considered “too complicated” even after
– or, perhaps because of – adopting the existing (marketable)
finite volume or finite difference software packages. It
seems that, in order to get a breakthrough and to make VOA
more popular, an appealing case study is needed – and fi-
nanced. In this case study it can be clearly shown that the ac-
curate and continuous (exactly honoring the continuity equa-
tion) 3-dimensional estimate of the specific discharge is su-
perior to the classical head-based approach. The superiority
is to be well defined, either in terms of ultimate economics of
the case, or just in terms of scientific accuracy of the physi-
cally estimated variables, or both.
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Fig. 5. Illustration of the simulated system
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APPENDIX A: The 3-dimensional stream function

Darcy’s law
�

q k� � ��� – in which the head occurs – is
mathematically equivalent to � � � ��k q1 0

�

�

– from which the
head is eliminated. In addition, the continuity equation
� � �

�

q 0– in which the head does not occur – is equivalent to
� �

q � �� � � , where vector
�

� , is the 3-dimensional stream
function (or vector potential). Substitution into the equiva-
lent form of Darcy’s law yields

� � � � ��k 1 0
�

�

� . [A.1]

After having solved
�

� from this equation the
Darcy velocity

�

q can be calculated. Finally, using
Darcy’s law the head follows from integration of
d d d d–1� = (kx q x k q y k q zx y y z z	 	� �1 1 ) along an arbitrary path.
Like in the 2-dimensional case, it is sometimes more practi-
cal (and “safer” from a numerical point of view) to deter-
mine the head directly from the 3-dimensional head equation

� � �� �k � 0 . [A.2]

APPENDIX B: Alternative formulation of the mixed hybrid finite element method

We consider a grid (mesh) with NV volumes, NF faces,
NE edges and NN nodes. On this grid the continuity equation
(inflow = outflow) is represented by the matrix-vector
equation
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. , [B.1]
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in short hand notation written as matrix-vector equation DQ
= 0. Qf is the flux (flow rate) through face f; it is a compo-
nent of flux vector Q. In a more or less similar way, on this
grid we can write Darcy’s law as
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[B.2]

in short hand notation written as matrix-vector notation DT
�

– � = �Q. For an explanation of the meaning of matrix D see
Appendix C. Here �v is the head in the center of grid volume
v, while �f is plus or minus the head on boundary face f; on
internal faces �f = 0. �fg is a component of impedance (resis-
tance) matrix � denoting the hydraulic resistance experi-

enced by the flux through face f under the influence of the
head difference between face g. If � is a diagonal matrix, its
inverse, �

–1, can simply be determined. In that case substitu-
tion of equation [B.1] into equation [B.2] yields (in short-
-hand matrix-vector notation)

D�
–1DT

� = D�
–1

� . [B.3]

Equation [B.3] is equivalent to the system of algebraic
equations M� = B upon which the block centered finite dif-
ference method (e.g. the popular MODFLOW model) is
based.

If � is not a diagonal matrix, its inverse cannot efficiently
be determined numerically, except for a domain with only a
few grid volumes. For one grid volume the head in the volume
center can simply be determined as � = (D�

–1DT)–1D�
–1

�.
Substitution into equation [B.2] relates the six face-based fluxes
to the six face centered heads Q = �

–1[DT(D�
–1DT)–1D� – I]�.

Now we consider a domain partitioned into many such
“one-grid-volume-domains”. Requiring continuity of fluxes
and heads at the faces, we end up with a system of linear al-
gebraic equations for the heads in the face centers, from
which the heads can be solved by well established numerical
techniques (Kaasschietter, 1988; 1990). For more details see
(Zijl, 2005).

APPENDIX C: Incidence matrices

Matrix D is the grid’s incidence matrix relating volumes
to faces. If volume v is not connected to face f , Dvf = 0. If
there is a connection Dvf = 	1, the plus (+) sign holds if the
orientation of face f points out of volume v, otherwise the
sign is minus (–).

Matrix R is the grid’s incidence matrix relating faces to
edges. If face f is not connected to edge e, component Rfe = 0.
If there is a connection Rfe = 	1, the plus (+) sign holds if the
orientation of edge e matches with the orientation of face f,
otherwise the sign is minus (–).
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