# BIULETYN PAŃSTWOWEGO INSTYTUTU GEOLOGICZNEGO 464: 61–78, 2015 R. DOI: 10.5604/08676143.1200432

## BADANIA IZOTOPÓW SIARKI W MINERAŁACH SIARCZKOWYCH ZE ZŁÓŻ RUD POLIMETALICZNYCH W SUDETACH ZA POMOCĄ MIKROSONDY JONOWEJ SHRIMP IIE/MC

## SULPHUR ISOTOPE MEASUREMENTS OF SULPHIDE MINERALS FROM THE POLYMETALLIC ORE DEPOSITS IN THE SUDETES, USING THE SHRIMP IIE/MC ION MICROPROBE

#### STANISŁAW Z. MIKULSKI<sup>1</sup>, EWA KRZEMIŃSKA<sup>1</sup>, ZBIGNIEW CZUPYT<sup>1</sup>, IAN S. WILLIAMS<sup>2</sup>

**Abstrakt.** W artykule opisano wyniki analiz izotopowych siarki siarczkowej przeprowadzonych po raz pierwszy w PIG-PIB za pomocą nowoczesnej mikrosondy jonowej SHRIMP IIe/MC. Rezultaty wskazują na dużą precyzję i szybkość analiz metodą SIMS oraz na wysoką powtarzalność wyników. W porównaniu z analizą stosunków izotopowych siarki konwencjonalną metodą spektrometrii gazowej IRMS stwierdzono zdecydowaną przewagę na korzyść techniki SIMS. W metodzie tej możliwa jest obserwacja analizowanej powierzchni w skali mikronów i precyzyjne wybranie miejsca analizy (ok. 20 µm), w tym uniknięcie inkluzji lub stref spękań w badanych kryształach siarczków. W przypadku analiz izotopowych siarki metodą konwencjonalną IRMS efekt homogenizacji próbek znacznie wpływa na końcowy wynik. Technika mikrosondy jonowej SIMS, dzięki wysokiej rozdzielczości przestrzennej, dostarcza bardziej szczegółowych wyników. Skład izotopowy siarki wyznaczony w wyniku badań próbek pirytów z rejonu zarzuconego złoża Au–Cu–As w Radzimowicach w nieznacznym stopniu odbiega od  $\delta^{34}$ S = 0‰ (średnia ważona  $\delta^{34}$ S dla próbki 10B = +0,84 ±0,24‰, *n* = 60, dla próbki M20 = +0,37 ±0,13‰, *n* = 35, a dla próbki M21 = -0,03 ±0,32‰, *n* = 26), co wskazuje na źródło siarki związane z magmą odpowiadającą stopom płaszczowym lub dolnoskorupowym. Z kolei w przypadku pirytu z wyrobiska w rejonie Leszczyńca uzyskano ujemne wartości  $\delta^{34}$ S poniżej –1‰ (zakres od -3,24 ±0,08‰ do -1,19 ±0,09‰), co świadczy o udziale procesu kontaminacji i o niewielkim wpływie osadowego protolitu podczas generacji stopu.

Slowa kluczowe: izotopy siarki, piryt, rudy siarczkowe, SIMS, Sudety.

**Abstract.** Results of sulphur isotope analyses in sulphides by use of modern ion microprobe equipment – SHRIMP IIe/MC – are described in the paper. Measurements with an application of the SIMS method indicate high precision, fast procedure as well as high repeatability of results. Considering the sulphur isotopic ratio measured by the IRMS (the conventional method of gas spectrometry), advantage of the SIMS method is clearly visible. It allows for observation of the analysed surface at the micron-scale and for very precise selection of the area of analysis (about 20 µm in diameter), including the avoiding of other mineral microinclusions or microfractures in sulphide crystals, which are common features. In the case of the IRMS sulphur isotope analyses sample homogenization strongly influenced obtained results. The SIMS ion microprobe technique provides high spatial resolution which enables more reliable results. In the case of pyrites analysed from the abandoned Au–Cu–As Radzimowice deposit results of isotopic sulphur are close to  $\delta^{34}S = 0\%$  (weighted average of  $\delta^{34}S$  for sample 10B is +0.84 ±0.24‰, *n* = 60, for sample M20 +0.37 ±0.13‰, *n* = 35, and for sample M21 -0.03 ±0.32‰, *n* = 26), which indicates the source of sulphur from processes related to magmas probably of mantle or lower crust origins. On the other hand pyrites from the old mining prospect in Leszczyniec have negative  $\delta^{34}S$  values below –1‰ (ranging from -3.24 ±0.08‰ to -1.19 ±0.09‰), which suggest a contamination process and possible minor input of sedimentary protolith during the magma generation.

Key words: sulphur isotopes, pyrite, sulphide ores, Secondary Ion Mass Spectrometry, the Sudetes.

<sup>&</sup>lt;sup>1</sup> Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, ul. Rakowiecka 4, 00-975 Warszawa; e-mail: stanislaw.mikulski@pgi.gov.pl.
<sup>2</sup> Research School of Earth Sciences Australian National University, Canberra.

## WSTĘP

W Państwowym Instytucie Geologicznym – Państwowym Instytucie Badawczym (PIG-PIB) wykonano badania izotopowe siarki siarczkowej z rud polimetalicznych z wykorzystaniem nowoczesnej aparatury mikroanalitycznej (Mikulski i in., 2015). Głównymi celami eksperymentu były:

- wdrożenie regularnych pomiarów mas izotopów siarki <sup>34</sup>S i <sup>33</sup>S w stanie stałym za pomocą mikrosondy jonowej SHRIMP IIe/MC przez optymalizację ustawień puszek Faradaya i innych parametrów technicznych – precyzyjny dobór materiału referencyjnego;
- określenie źródeł siarki na podstawie nowych oznaczeń δ<sup>34</sup>S w pirytach z rud polimetalicznych z rejonu zarzuconego złoża Au–Cu–As w Radzimowicach (Góry Kaczawskie) oraz z zarzuconych wyrobisk górniczych w rejonie Leszczyńca (Rudawy Janowickie; fig. 1);
- rozpoznanie stopnia homogeniczności pojedynczych ziaren siarczków występujących w rudach oraz w skałach je goszczących;
- sprawdzenie stopnia powtarzalności badań z użyciem mikrosondy jonowej w trakcie niezależnych cykli analiz tych samych próbek.

W eksperymencie wykorzystano siarczki, z których część przeanalizowano już wcześniej innymi metodami. Próbki wytypowane do analiz izotopowych przy użyciu mikrosondy jonowej to zestaw czterech koncentratów ziaren pirytu pochodzących z rud polimetalicznych genetycznie związanych z procesami magmowymi. Próbki M20, M21 i 10B poddano wcześniej badaniom mineralogiczno-petrograficznym i izotopowym (Mikulski, 1999, 2001, 2004, 2005, 2007a, b). Znane są zarówno wiek skał zawierających mineralizacje siarczkowe, jak i geochronologia procesów magmowych odpowiedzialnych za rozwój zjawisk hydrotermalnych (Mikulski, Williams, 2014). W dwóch przypadkach wykonano także analizy stosunków izotopowych siarki konwencjonalną metodą spektrometrii gazowej IRMS (Jędrysek, 2001; Wójtowicz, 2004).

Technika IRMS polega na analizie stosunków izotopowych z wykorzystaniem próbek w postaci gazowej. W przypadku pomiarów  $\delta^{34}$ S gazem roboczym do analizy w spektrometrze mas jest SO<sub>2</sub>, stąd konieczność przeprowadzenia próbek innych niż gazowe w formę gazową. Wymaga to kilkuetapowej i rozbudowanej procedury mechanicznego i chemicznego przygotowania próbki, przy czym w toku postępowania nie może zmienić się jej skład izotopowy.

Cykl analiz izotopowych IRMS, służących teraz za układ odniesienia, wykonano w latach 2001-2004 w dwóch niezależnych laboratoriach: w Pracowni Geologii Izotopowej i Geoekologii na Uniwersytecie Wrocławskim (Jędrysek, 2001, według procedury Yanigasawy i Sakai, 1983) oraz w Instytucie Fizyki Uniwersytetu Marii Curie-Skłodowskiej w Lublinie (Wójtowicz, 2004) z wykorzystaniem spektrometru gazowego IRMS MI-1305 (standard BaSO, NBS-127, procedura obliczeń według Kajiwary i Krausego, 1971). Stosowane w przypadku spektrometrów gazowych IRMS procedury analityczne odnoszą się do wzorca NBS-127, pod względem chemicznym siarczanu baru (BaSO<sub>4</sub>), z referencyjnym  $\delta^{34/32}$ S<sub>VCDT</sub> = +21,12‰ (+22,00‰; www.ciaaw.org/ sulfur-references). Dokładność pomiarów δ<sup>34</sup>S wynosiła ±0,08‰. Bład analityczny pomiarów izotopowych w próbkach był niższy niż 0,20‰.



Fig. 1. Lokalizacja miejsc pobrania próbek do badań izotopowych siarki siarczkowej: zarzuconego złoża Au–Cu–As w Radzimowicach i starych wyrobisk górniczych z rejonu Leszczyńca

Locality of sampling sites for the sulphur isotope studies: the abandoned Au–Cu–As Radzimowice deposit and old mining prospect near the Leszczyniec village Przeciwieństwem techniki wymagającej chemicznej homogenizacji badanej próbki jest analityka z zachowaniem naturalnych relacji przestrzennych, umożliwiająca pomiar składu izotopowego w dowolnie wybranym miejscu w ziarnie, odpowiadającym konkretnemu etapowi krystalizacji ziaren pirytu w skale. Technikę *in situ* stosują m.in. mikrosondy jonowe i różnego typu spektrometry mas jonów wtórnych (ang. *secondary ion mass spectrometers* – SIMS).

W przeprowadzonym eksperymencie do badań wewnętrznej zmienności izotopowej w siarczkach z Radzimowic zastosowano mikrosondę SHRIMP IIe/MC i oznaczono skład izotopowy siarki w pojedynczych ziarnach z kilku różnych skał macierzystych.

Wykorzystano ziarna pirytu, które wyseparowano, gdy przygotowywane były koncentraty siarczkowe do badań metodą IRMS. W czasie separacji jedyna chemiczna ingerencja była związana z użyciem kwasu fluorowego do usunięcia krzemianów. Po przemyciu ich wodą destylowaną powstałe koncentraty siarczków ręcznie segregowano pod binokularem aż do uzyskania minimum 2 mg ziaren do analiz IRMS. Pozostałe wyseparowane piryty poddano badaniom w ramach nowego cyklu analiz za pomocą mikrosondy jonowej.

## **METODY BADAŃ**

W przypadku analiz techniką SIMS preparatyka ograniczała się do czynności mechanicznych, takich jak wybranie pod binokularem reprezentatywnych ziaren z próbek M13, M20, M21 i 10B i przyklejenie ich na taśmę klejąca w odpowiednich grupach (fig. 2A). Nie wykonywano żadnej dodatkowej preparatyki chemicznej i nie ingerowano w naturalny, niekiedy niehomogeniczny skład chemiczny. Zachowane zostały naturalne niejednorodności przestrzenne w składzie izotopowym siarczków.

Ziarna pirytu do badań na mikrosondzie zatopiono w żywicy epoksydowej (Struers Epofix), tak żeby ustabilizować obiekty, ponieważ analizy są prowadzone w warunkach wysokiej próżni ( $10^{-8}$  tora =  $1,33 \times 10^{-6}$  Pa). Preparat o średnicy 35,5 mm, tzw. megamount, z obszarem roboczym o średnicy ok. 24 mm obejmuje, oprócz grupy ziaren z próbek, także kilka pojedynczych ziaren wzorca - materiału o referencyjnej wartości 834S. Preparat przygotowano z wykorzystaniem papieru ściernego (typ 1200) i tarczy szlifierskiej z pastą diamentową (średnica ziarna 1 µm). Przed rozpoczęciem analiz przygotowano zestaw zdjęć w świetle odbitym (ang. reflected light – RL) dokumentujących powierzchnie preparatów w mikroskopie optycznym (fig. 2B) oraz obrazy elektronów wstecznie rozproszonych (ang. back scattered electron image - BSEI) w mikroskopie skaningowym. Powierzchnia preparatów do badań na mikrosondach elektronowej i jonowej musi przewodzić prąd, dlatego konieczne jest pokrycie próbki cienką warstwą (6-10 nm) złota.

#### Fig. 2. Ziarna pirytu w preparacie przygotowanym do badań na mikrosondzie jonowej

A – próbki i materiał referencyjny (Ruttan py) na folii przed zalaniem żywicą Epofix; B – mikrofotografia w świetle odbitym powierzchni gotowego preparatu służąca do nawigacji i selekcji miejsc analiz; C – mikrofotografia w świetle odbitym powierzchni ze śladami miejsc po analizie (średnica punktu: 20 µm)

Pyrite grains in the mount prepared for ion microprobe

A – samples and reference material (Ruttan py) on the tape before pouring by Epofix resin; **B** – reflected light photomicrograph of the mount surface used as a navigation map and for selection spot locations; **C** – reflected light photomicrograph of the mount surface with spots after analysis (diameter of point: 20  $\mu$ m)

Z uwagi na często podkreślany niemal niedestrukcyjny sposób analiz techniką SIMS w ramach eksperymentu (średnica wiązki pomiarowej ok. 18–20 µm, głębokość penetracji ok. 2–3 µm), w celu kontroli powtarzalności wyników, te



63

same ziarna wykorzystano w dwóch sesjach analitycznych. Pierwsza z nich odbyła się w kwietniu 2015 r. (3–4 analizy w każdym z ziaren), a druga – w sierpniu 2015 r., po nieznacznym oczyszczeniu i wypolerowaniu powierzchni już zbadanego preparatu. W drugiej sesji przeprowadzono większą liczbę pomiarów w każdym z pirytów.

Jako materiał referencyjny w analizach na mikrosondzie jonowej zawsze wykorzystuje się wzorzec o analogicznym do badanego minerału składzie chemicznym. W tym przypadku użyto pirytu Ruttan (fig. 2A–C), z wulkanogenicznych skał maficznych zawierających masywne siarczki o wieku ok. 1,88 mld lat ze stanu Manitoba w USA. Referencyjna wartość  $\delta^{34}$ S dla tego pirytu wynosi +1,20 ±0,10‰ (VCDT; Crowe, Vaughan, 1996; Barrie, Taylor, 2001; Cabral i in., 2013).

Powtarzalność analiz izotopowych  $\delta^{34}$ S ocenia się w trakcie całej sesji dzięki systematycznej analizie pirytu referencyjnego co 6–8 analiz próbki. Niektóre laboratoria stosują mniejszą częstotliwość pomiarów wzorca i analizują piryt Ruttan co 12 punktów w próbce, a co 10 punktów dodatkowy wzorzec pirytu UWPy (WiscSIMS, Ushikubo i in., 2014). Dokładność pomiarów na materiale referencyjnym Ruttan wynosiła w pierwszej sesji:  $\delta^{34}S = +1,21 \pm 0,17\%$  (*n* = 18), odchylenie standardowe *sd* = 0,13, a w drugiej sesji:  $\delta^{34}S = +1,21 \pm 0,09\%$  (*n* = 17; *sd* = 0,19). Typowa powtarzalność (*sd*) była mniejsza niż 0,20.

Analizy izotopów siarki ( ${}^{32}S$ ,  ${}^{33}S$  i  ${}^{34}S$ ) wykonywano za pomocą mikrosondy jonowej SHRIMP IIe/MC w PIG-PIB. Instrument pracował w dwóch sesjach po 24 godziny przy podobnym ustawieniu dwóch puszek Faradaya. Za każdym razem pomiar obejmował sześć skanów trzech mas ( ${}^{32}S$ ,  ${}^{33}S$ i  ${}^{34}S$ ) i był poprzedzony 120-sekundowym czyszczeniem powierzchni, tzw. rastrowaniem. Łączny czas pomiaru jednego punktu przekraczał 6 min. Wszystkie wyniki analiz (patrz apendyks) podano w odniesieniu do składu izotopowego troilitu z meteorytu żelaznego kanionu Diablo (Vienna Canyon Diablo Troilite – VCDT;  $\delta^{34}S = 0$ %). Wyniki zredagowano za pomocą programu POXY, który uwzględnia parametry analiz, w tym położenia detektorów i użyty materiał referencyjny.

## WYNIKI BADAŃ

W przypadku każdej próbki pirytu wykonano dwie sesje analiz: pierwszą, która jest traktowana jako cykl wstępny (średnio po 2 punkty w ziarnie, łącznie 50 pomiarów), oraz drugą, główną sesję (łącznie 163 pomiary w 53 ziarnach). W opisie uwzględniono numer ziarna i kolejność analiz w danym ziarnie. Przykładowo 10B.B.3.4 należy odczytać jako: próbka 10B, grupa B, ziarno 3, punkt 4. Podano też termin wykonania analizy i czas jej trwania. Układ wyników w apendyksie odpowiada układowi widocznemu w preparacie, tzn. próbki 10B, M13 i M20 są reprezentowane przez dwie grupy, a M21 – przez jedną (tabl. I: 1–6, pkt 1–6).

Błędy pojedynczych pomiarów w pierwszej sesji były większe, najczęściej w granicach  $\pm 0,30-0,40$ ‰, a nawet  $\pm 0,70$ ‰. Wyniki drugiej sesji były wyraźnie lepsze, z błędami pojedynczych pomiarów wynoszącymi  $\pm 0,10$ ‰, i to one stanowią punkt odniesienia i podstawę dyskusji.

Wszystkie wartości  $\delta^{34}$ S uzyskane w toku analiz izotopowych pirytów wynoszą od –3,50 do +2,50‰. Graficzne zestawienie wyników ilustruje różnice między próbkami w badanej kolekcji i zakres zmienności w każdej grupie.

#### PRÓBKI PIRYTÓW ZE ZŁOŻA Au–Cu–As W RADZIMOWICACH

Zarzucone złoże złotonośnych żył kwarcowo-siarczkowych w Radzimowicach znajduje się w południowej części metamorfiku kaczawskiego, w rejonie Wojcieszowa w Górach Kaczawskich (Stauffacher, 1915; Manecki, 1965; Zimnoch, 1965; Paulo, Salamon, 1974; Mikulski, 2005, 2011, 2015; fig. 1). Góry Kaczawskie stanowią strukturę zrębową między niecką północnosudecką a niecką śródsudecką. Cała ta strefa jest zaliczana do środkowoeuropejskiej prowincji wulkanicznej, która rozciąga się na długości ok. 400 km (Skurzewski, 1984). Wulkanizm jest permo-karboński i ma charakter bimodalny. Skałami goszczącymi polimetaliczne żyły ze złotem są dolnopaleozoiczne łupki radzimowickie z przeławiceniami łupków krzemionkowych zaliczane do jednostki Bolkowa oraz górnokarbońskie intruzywy masywów porfirowych Żeleźniaka i Bukowinki. Są one zbudowane głównie z dacytów i ryolitów pociętych przez dajki i żyły andezytów oraz lamprofirów (Teisseyre, 1967; Skurzewski, 1984; Mikulski, 2007a). W złożu rozpoznano kilkanaście żył kwarcowo-siarczkowych, spośród których sześć głównych było eksploatowanych. Żyły rozciągają się w kierunku W-E i stromo zapadają na północ bądź na południe. Ich długość po biegu wynosi przeciętnie ok. 180-320 m (maksymalnie do ok. 2,1 km - żyła Pocieszenie Górnika). Średnia miąższość żył waha się w granicach 0,06-0,20 m, maksymalnie zaś dochodzi do 1,40 m. Głównymi minerałami rudnymi są arsenopiryt, chalkopiryt i piryt (fig. 3). Wyróżniono pięć generacji pirytu (np. zmetamorfizowane - framboidy, hydrotermalne - automorficzne kryształy czy przerosty z innymi siarczkami; Mikulski, 2007a). Zawartość arsenu w rudach wynosiła do 35%, miedzi do 10%, a srebra do 400 ppm. W bogatych rudach polimetalicznych są obecne również pierwiastki rzadkie takie jak tellur czy bizmut (Mikulski, 2014). Szacuje się, że ze złotonośnych siarczków uzyskano co najmniej 4 t złota.

Ziarna pirytu z próbki M20 są gruboziarniste i pochodzą z masywnej rudy polimetalicznej z pola Wilhelm w rejonie szybu Luis kopalni w Radzimowicach. Ziarna pirytu w próbce M20 stanowią najbardziej homogeniczną grupę (fig. 2A–C, tabl. I: 4). Wyznaczone wartości stosunków izotopowych siarki  $\delta^{34}$ S mieszczą się w wąskim zakresie od –0,81 ±0,13‰ do +0,91 ±0,11‰. Średnia ważona z 35 pomiarów wyniosła +0,37 ±0,13‰ (tab. 1). Takie same warto-



Fig. 3. A. Typowa mineralizacja siarczkami pirytu w ryolicie porfirowym z zarzuconego złoża Au–Cu–As Radzimowice. B, C. Kryształy pirytu o różnym stopniu automorfizmu wykorzystane w badaniach izotopowych siarki metodami IRMS i SIMS

**A.** Typical sulfides mineralization of pyrite in rhyolite porphyry at the abandoned Au–Cu–As Radzimowice deposit. **B**, **C.** Pyrite crystals of variable degree of automorphism used in sulphur isotope analyses by IRMS and SIMS method

#### Tabela 1

## Porównanie rezultatów analiz δ<sup>34</sup>S VCDT w pirytach z dwóch sesji na SHRIMP i dwóch z laboratoriów na Uniwersytecie Wrocławskim i na Uniwersytecie Marii Curie-Skłodowskiej w Lublinie Comparison of the results of analyzes δ<sup>34</sup>S VCDT in pyrite from two SHRIMP sessions

and two laboratories at the University of Wroclaw and at the University of Maria Curie-Skłodowska in Lublin

| Symbol próbki/ Lokalizacja | δ <sup>34</sup> S lab. SHRIMP – sesja I  | δ <sup>34</sup> S lab. SHRIMP – sesja II | $\delta^{34}S$ – lab. Lublin | $\delta^{34}S$ – lab. Wrocław |
|----------------------------|------------------------------------------|------------------------------------------|------------------------------|-------------------------------|
| M20/ Radzimowice           | $+0.37 \pm 0.38\%$<br>sd = 0.65; n = 12  | +0,37 ±0,13‰<br>sd = 0,62; n = 35        | -                            | +0,33‰                        |
| M21/ Radzimowice           | $+0.15 \pm 0.35\%$<br>sd = 0.92; n = 12  | $-0.03 \pm 0.32\%$<br>sd = 0.62; n = 26  | _                            | +0,15‰                        |
| 10B/ Radzimowice           | $+0,47 \pm 0,43\%,$<br>sd = 0,69; n = 10 | +0,84 ±0,24‰,<br>sd = 0,69; n = 60       | +0,62‰                       | +0,96‰                        |
| M13/ Leszczyniec           | $-2,37 \pm 0,42\%$<br>sd = 0,62; n = 12  | $-2,10 \pm 0,16\%$<br>sd = 0,62; n = 39  | -2,37‰                       | -2,65‰                        |

Objaśnienia: sd - odchylenie standardowe, n - liczba pomiarów/ Explanation: sd - standard deviation, n - number of measurements

ści, chociaż z mniejszą dokładnością, odnotowano w pierwszej sesji – średnia ważona z 12 pomiarów wyniosła  $+0,37 \pm 0,38\%$ ; jest to bardzo dobry dowód na powtarzalność analiz przy stosowaniu techniki SIMS.

Próbka M21 pochodzi z rejonu szybu Arnold kopalni w Radzimowicach i składa się z gruboziarnistego pirytu (zaliczonego do trzeciej generacji według Mikulskiego, 2007a; fig. 2A–C, 3A, B, tabl. I: 5, 6) z rudy polimetalicznej w porfirze. Rezultaty analiz próbki M21 są zbliżone do wyników badań próbki M20, przy czym przedział wartości jest nieco szerszy (fig. 4). W wyniku 26 pomiarów  $\delta^{34}$ S uzyskano pojedyncze wartości w zakresie od –1,75 do +1,70‰, przy czym głównie od –1,00‰ do +1,00‰. Średnia ważona z 26 pomiarów wyniosła –0,03 ±0,32‰ (tab. 1). Pierwsza sesja, z mniejszą liczbą pomiarów dała dość podobne wyni-ki, ze średnią ważoną +0,15 ±0,34‰.

Próbka 10B pochodzi z rejonu szybu Luis kopalni w Radzimowicach. Poszczególne ziarna pirytu z tej próbki (zaliczonego do trzeciej generacji) odznaczają się wyraźną zmiennością (fig. 2A-C, tabl. I: 1, 2). W przypadku próbki 10B odnotowano najszerszy zakres wyników analiz  $\delta^{34}$ S: od -1,97 ±0,10‰ do +2,33 ±0,12‰. Tę niejednorodność widać szczególnie przy porównaniu wartości  $\delta^{34}$ S z dwóch podgrup 10B.A i 10B.B - średnie ważone dla 10 ziaren wynosza odpowiednio +1,52 ±0,21‰ i +0,25 ±0,26‰. Średnia ważona z wszystkich 60 pomiarów wyniosła  $\pm 0.84 \pm 0.24\%$  (tab. 1). Dla porównania w wyniku badań  $\delta^{34}$ S na IRMS w dwóch laboratoriach uzyskano wartości +0,96‰ (Jędrysek, 2001) oraz +0,62‰ (Wójtowicz, 2004). Takie zestawienie średnich wartości δ<sup>34</sup>S najlepiej ilustruje efekty mechanizmu homogenizacji próbek w trakcie analiz metodą konwencjonalną IRMS, która zaciera ewentualne różnice międzyziarnowe, np. 10B.B.1 (δ<sup>34</sup>S od -1,79 do -0,99‰) vs 10B.B.2 (δ<sup>34</sup>S od +0,01 do -0,34‰), oraz wewnatrzziarnowe, np. 10B.B.3.4  $(\delta^{34}S = +1,46\%)$  vs 10B.B.3.3  $(\delta^{34}S = -0,10\%)$ ; tabl. I: 1, 2, apendyks).

65



Fig. 4. Wartości δ<sup>34</sup>S<sub>VCDT</sub> dla poszczególnych próbek i ziaren (druga sesja) wraz ze słupkami błędów 2σ. Szczegółowe dane znajdują się w apendyksie

 $\delta^{34}S_{vCDS}$  values measured in each sample and pyrite grains (session two) with the  $2\sigma$  error. Details can be found in Appendix

#### PRÓBKA PIRYTU Z ZARZUCONEGO WYROBISKA RUD POLIMETALICZNYCH W LESZCZYŃCU

Wyrobiska górnicze w Leszczyńcu znajdują się we wschodniej osłonie metamorficznej waryscyjskiego granitoidu karkonoskiego, w tzw. formacji wulkanicznej z Leszczyńca (Teisseyre, 1973; fig. 1). Formacja ta jest zbudowana wyłącznie z dolnopaleozoicznych przeobrażonych skał wulkanicznych i plutonicznych o charakterze asocjacji spilitowo-keratofirowej (Winchester i in., 1995). Skały maficzne często przeławicają się tu z łupkami kwarcowo-albitowo--chlorytowymi, lokalnie pirytonośnymi, powstałymi z kwaśnych wulkanoklastyków, law lub skał subwulkanicznych szeregu magmowego ryodacyt-dacyt-ryolit (Mazur, 1995; Kozdrój, 2003; Kozdrój i in., 2005). Niewielkie wyrobiska w rejonie Leszczyńca są zlokalizowane na zboczach góry Bobrzak, w odległości zaledwie ok. 2-3 km na południe od polimetalicznego złoża arsenu w Czarnowie (Zimnoch, 1983; Mikulski, 2010). W 1801 r. w rejonie Bobrzaka gwarectwo Frohe Erwartung wydrążyło krótką sztolnię i płytki szyb (Dziekoński, 1972). W trakcie prac natrafiono na ślady dawnych wyrobisk, jednak większych nagromadzeń polimetalicznych rud siarczkowych nie znaleziono i roboty wkrótce zostały wstrzymane. Siarczki do badań izotopowych pobrano ze skruszonej masywnej rudy polimetalicznej, w której zdecydowanie przeważał piryt (próbka M13; fig. 5).

Ziarna pirytu z próbki M13 są gruboziarniste. Piryty są poprzerastane i tworzą wydłużone agregaty o długości do



Fig. 5. Masywna ruda pirytowa z Leszczyńca stanowiąca przedmiot badań izotopowych siarki siarczkowej metodami IRMS i SIMS

Massive pyrite ore being subject of sulphur isotope analyses by IRMS and SIMS method

kilkudziesięciu centymetrów. Próbka M13 odznacza się najniższymi wartościami  $\delta^{34}$ S – mieszczą się one w zakresie od -3,24 ±0,08‰ do -1,19 ±0,09‰. Średnia ważona z 39 pomiarów to -2,10 ±0,16‰ (tab. 1). W wyniku 12 pomiarów  $\delta^{34}$ S w pierwszej sesji uzyskano średnią -2,37 ±0,42‰. Dla porównania w wyniku badań na IRMS wyznaczono wartości  $\delta^{34}$ S równe -2,65‰ oraz -2,37‰. W tym wypadku można mówić o bardzo dobrej zgodności obu technik i obu sesji na SHRIMP.

## **PODSUMOWANIE I DYSKUSJA**

Wszystkie zbadane próbki pirytów z zarzuconego złoża Au-Cu-As w Radzimowicach i wyrobisk górniczych w rejonie Leszczyńca z Sudetów mają sygnatury izotopowe  $\delta^{34}$ S typowe dla skał magmowych (fig. 4). Zbliżone zakresy zawartości izotopu <sup>34</sup>S w siarce siarczkowej stwierdzono też na obszarze bloku karkonosko-izerskiego (Mayer i in., 2012). W przypadku pirytów związanych genetycznie z najbardziej prymitywnymi skałami płaszczowymi i dolnoskorupowymi wartość δ34S jest bliska 0‰ (np. Ohmoto, Rye, 1979; Ohmoto, 1986; Ohmoto, Goldhaber, 1997). Wszelkie wahania mogą odzwierciedlać różne procesy generacji stopów, jak częściowe topienie skał osadowych z udziałem pirytu (niskie wartości  $\delta^{34}$ S) czy asymilacja, np. ewaporatów (wyższe wartości δ<sup>34</sup>S; Sasaki, Ishihara, 1979; Ishihara, Sasaki, 1989; Santosh, Masuda, 1991). Ishihara i Sasaki (1989) stwierdzili, że w granitoidach serii ilmenitowej, powstałych w wyniku częściowego stopienia głównie osadowego protolitu, δ<sup>34</sup>S siarki w siarczkach wynosiła poniżej 0‰. Z kolei w granitoidach serii magnetytowej, które można uznać za powstałe z głównie magmowego protolitu, δ<sup>34</sup>S siarki siarczkowej była większa niż 0‰. Stosunki izotopowe siarczków najlepiej sprawdzają się jako narzędzie do identyfikacji procesu kontaminacji, jeśli dochodzi do interakcji magmy ze skałami otoczenia zawierającymi siarkę o składzie izotopowym w istotny sposób różniącym się od siarki występującej w magmie.

Skład izotopowy siarki z analizowanych próbek pirytu z czterech różnych okruszcowanych skał w nieznacznym stopniu odbiega od  $\delta^{34}S = 0$ ‰, czyli wartości najbardziej charakterystycznej dla stopów płaszczowych czy dolnoskorupowych, co przemawiałoby za takim właśnie pochodzeniem skał macierzystych. Wyjątek stanowi próbka pirytu z rejonu Leszczyńca (M13). Tylko w jej przypadku uzyskano ujemne wartości  $\delta^{34}$ S poniżej -1,00‰ (zakres od -3,24  $\pm 0,08\%$  do  $-1,19 \pm 0,09\%$ ), co może świadczyć o udziale procesu kontaminacji i o niewielkim wpływie osadowego protolitu podczas generacji stopu. Rozpoznaną mineralizację można zaliczyć do typu masywnych siarczków genetycznie związanych z procesami podwodnego wulkanizmu oceanicznego. W formacji wulkanicznej z Leszczyńca procesy te zachodziły w okresie od górnego kambru do dolnego ordowiku (Winchester i in., 1995; Kozdrój i in., 2005).

Piryty z próbek M20 i M21 nieanalizowane wcześniej metodą IRMS mają bardzo podobne cechy, co wskazuje na duże analogie między stopami macierzystymi i krystalizującą magmą porfirową. Jednocześnie można stwierdzić pewne podobieństwo między pirytami z próbek 10B, M20 i M21, przy czym próbki M20 i M21 reprezentują bardziej prymitywne stopy, z wartościami  $\delta^{34}$ S oscylującymi wokół 0‰ (od –1 do +1‰), czyli wartości charakterystycznej dla stopów płaszczowych, a próbka 10B wykazuje bardziej złożoną ewolucję w trakcie krystalizacji poszczególnych ziaren czy stref ziaren, co świadczy o wieloetapowości procesów pomagmowych.

Porównanie średnich ważonych wartości  $\delta^{34}$ S, z uwzględnieniem błędu pojedynczego pomiaru, z obu sesji analitycznych techniką SIMS z wynikami analiz metodą spektrometrii gazowej IRMS (tab. 1) wskazuje, że wybrano właściwe ustawienia puszek Faradaya w pierwszym eksperymencie. Co prawda nieznaczna modyfikacja sprawiła, że w drugiej sesji analizy izotopów siarki w pojedynczych ziarnach były dokładniejsze. Wyniki obu sesji są w dużym stopniu zgodne. Wysoką powtarzalność uzyskano w przypadku próbek M20 i M13. Jest to udany test sprawdzający możliwość powtarzania analiz na tych samych obiektach. Wykorzystane w eksperymencie piryty, po oczyszczeniu preparatu i powtórnym napyleniu, analizowano w tych samych i w innych punktach w poszczególnych ziarnach. O ogólnej zgodności wyników możemy mówić także w przypadku próbek M21 i 10B, co jest istotne, gdy obserwujemy dużą wewnętrzną zmienność składu izotopowego siarki z poszczególnych ziaren. Różne wartości δ<sup>34</sup>S odnotowane w wyniku badań ziaren z próbki 10B (Radzimowice) mogą odzwierciedlać inne generacje pirytu, nieznacznie różniące się pod względem czasu krystalizacji i składu izotopowego, albo porcje stopu różniące się stopniem kontaminacji materiałem osadowym. Właśnie przy tego rodzaju "niehomogenicznościach" przestrzennych ziaren mikrosonda jonowa sprawdza się najlepiej. W prosty sposób można za jej pomocą prześledzić kolejne etapy ewolucji i wzrostu faz mineralnych, nie tylko powszechnie badanych cyrkonów, lecz także siarczków.

Osobne zagadnienie, które pojawiło się w trakcie analiz izotopowych na mikrosondzie jonowej, dotyczy wrostków innych niż badana faz mineralnych (tabl. I: 1, 2, 4, 6), które są odsłaniane w trakcie polerowania. Technika SIMS umożliwia obserwację analizowanej powierzchni w skali mikronów oraz precyzyjne wybranie miejsca analizy (ok. 20 μm), w tym ominięcie inkluzji lub stref spękań (tabl. I: 1). W badanych próbkach zaobserwowano spękania wewnątrz ziarna pirytu zabliźnionego galeną (10B.A.6) lub inkluzje, głównie galeny i arsenopirytu w pirytach. Wyniki analizy innej fazy mineralnej (tabl. I: 6, apendyks) wyraźnie odbiegają od wyników analizy pirytu w danej próbce (np. wartość -1,75‰ dla M21.1.3 w stosunku do -0,19‰ dla M21.1.1). W przypadku techniki IRMS homogenizacja próbek prowadzi do nieuwzględnienia problemu mikroinkluzji, istotnie wpływającego na końcowy wynik.

Na podstawie opisanych przykładów wykazano, że technika SIMS, dzięki wysokiej rozdzielczości przestrzennej:

- dostarcza bardziej rzeczywistych danych niż metoda spektrometrii gazowej IRMS;
- otwiera nowe możliwości w zakresie szczegółowych badań minerałów siarczkowych genetycznie związanych z różnymi etapami krystalizacji i ewolucji magmy oraz mineralizacji kruszcowej;
- pozwala na prowadzenie analiz izotopowych *in situ* i na precyzyjne wybranie miejsca analizy w konkretnym ziarnie;
- jest techniką gwarantującą powtarzanie analiz.

Badania wykonano w ramach dotacji statutowej MNiSW (tematy 61.3207.1502.00.0 i 61.2901.1502.05.0.).

#### LITERATURA

- BARRIE C.T., TAYLOR C.F., 2001 Geology, alteration mineralogy, geochemistry and volcanogenic massive-sulphide potential of the Ruttan mine area and the southern Rusty Lake volcanic belt (NTS 64B). Manitoba Geological Survey Open File Report 2001-9.
- CABRAL R.A., JACKSON M.G., ROSE-KOGA E.F., KOGA K.T., WHITEHOUSE M.J., ANTONELLI M.A., FARQUHAR J., DAY J.M.D., HAURI E.H., 2013 — Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. *Nature*, **496**: 490–493.
- CROWE D.E., VAUGHAN R.G., 1996 Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of <sup>34</sup>S/<sup>32</sup>S ratios. *Am. Mineral.*, **81**: 187–193.
- DZIEKOŃSKI T., 1972 Wydobywanie i metalurgia kruszców na Dolnym Śląsku od XIII do połowy XX wieku. Zakł. Narod. im. Ossolińskich, Wrocław.
- ISHIHARA S., SASAKI A., 1989 Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith – a reconnaissance study. *Geology*, 17: 788– 791.
- JĘDRYSEK M.O., 2001 Sprawozdanie z badań izotopowych siarki siarczkowej δ<sup>34</sup>S CDT z wybranych obszarów złożowych w Sudetach. *W*: Określenie temperatur krystalizacji złotonośnej formacji arsenowej w Sudetach w świetle badań w mikroobszarze, termobarometrycznych i izotopowych. Raport grantu KBN nr 9 T12B 002 17 (red. S.Z. Mikulski). Narod. Arch. Geol. PIG-PIB, Warszawa.
- KAJIWARA Y., KRAUSE H.R., 1971 Sulfur isotope partitioning in metallic sulfide systems. *Can. J. Earth Sci.*, **8**: 1397–1408.
- KOZDRÓJ W., 2003 Ewolucja geotektoniczna krystaliniku wschodnich Karkonoszy. W: Sudety Zachodnie: od wendu do czwartorzędu (red. W. Ciężkowski i in.). Pol. Tow. Geol., WIND, Wrocław.
- KOZDRÓJ W., TURNIAK K., TICHOMIROVA M., BOM-BACH K., ZIÓŁKOWSKA-KOZDRÓJ M., KACHLIK V., 2005 — New <sup>207</sup>Pb/<sup>206</sup>Pb zircon ages from the East Karkonosze Metamorphic Complex, West Sudetes – evidence of the Late Cambrian–Early Ordovician magmatism. *Geolines*, 19: 69–70.
- MANECKI A., 1965 Studium mineralogiczno-petrograficzne polimetalicznych żył okolicy Wojcieszowa (Dolny Śląsk). Pr. Min. Kom. Nauk Min., PAN Oddz. w Krakowie, 47, 2: 7–58.
- MAYER W., JĘDRYSEK M.O., GÓRKA M., DRZEWICKI W., MOCHNACKA K., PIECZKA A., 2012 — Preliminary results of sulphur isotope studies on sulfides from selected ore deposits and occurrences in the Karkonosze–Izera Massif (the Sudety Mts., Poland). *Mineralogia*, 43, 3/4: 213–222.
- MAZUR S., 1995 Strukturalna i metamorficzna ewolucja wschodniej okrywy granitu Karkonoszy w południowej części Rudaw Janowickich i Grzbiecie Lasockim. *Geol. Sudetica*, 29, 1: 31–103.
- MIKULSKI S.Z., 1999 Złoto z Radzimowic w Górach Kaczawskich (Sudety) – nowe dane geochemiczne i mineralogiczne. *Prz. Geol.*, 47, 11: 999–1005.
- MIKULSKI S.Z., 2001 (red.) Określenie temperatur krystalizacji złotonośnej formacji arsenowej w Sudetach w świetle badań w mikroobszarze, termobarometrycznych i izotopowych. Raport grantu KBN nr 9 T12B 002 17. Narod. Arch. Geol. PIG-PIB, Warszawa.
- MIKULSKI S.Z., 2004 Geneza i wiek (Re-Os) hercyńskich złóż złota w Sudetach w świetle badań organogeochemicz-

nych, geochemicznych i izotopowych (C, S, O). Raport grantu KBN nr 5 T12B 001 22. Narod. Arch. Geol. PIG-PIB, Warszawa.

- MIKULSKI S.Z., 2005 Geological, mineralogical and geochemical characteristics of the Radzimowice Au–As–Cu deposit from the Kaczawa Mountains (Western Sudetes, Poland) – an example of the transition of porphyry and epithermal style. *Mineral. Dep.*, **39**, 8: 904–920.
- MIKULSKI S.Z., 2007a The late-Variscan gold mineralization in the Kaczawa Mountains, Western Sudetes. *Pol. Geol. Inst. Spec. Pap.*, **22**: 1–162.
- MIKULSKI S.Z., 2007b Formy wystąpień złota w złożach kwarcowo-siarczkowych w Górach Kaczawskich. Prz. Geol., 55, 4: 298–299.
- MIKULSKI S.Z., 2010 Charakterystyka i geneza złotonośnej mineralizacji arsenowo-polimetalicznej w złożu Czarnów (Sudety Zachodnie). *Biul. Państw. Inst. Geol.*, **439**: 303–320.
- MIKULSKI S.Z., 2011 Gold deposits in Kaczawa Mountains, West Sudetes, SW Poland. W: Gold in Poland (red. A. Kozłowski, S.Z. Mikulski). Arch. Min. Monogr., 2: 63–83.
- MIKULSKI S.Z., 2014 Występowanie telluru i bizmutu w złotonośnych siarczkowych rudach polimetalicznych w Sudetach (SW Polska). Gosp. Sur. Min., 30, 2: 15–34.
- MIKULSKI S.Z., 2015 Mapy obszarów perspektywicznych wystąpień rud metali w Polsce w skali 1:200 000: pierwotne rudy złota towarzyszące mineralizacji siarczkowej na Dolnym i Górnym Śląsku oraz w Małopolsce. *Prz. Geol.*, 63, 9: 546– 555.
- MIKULSKI S.Z., WILLIAMS I.S., 2014 Zircon U-Pb dating of igneous rocks from the Radzimowice and Wielisław Złotoryjski auriferous polymetallic deposits, Sudetes, SW Poland. *Ann. Soc. Geol. Pol.*, 84, 3: 213–233.
- MIKULSKI S.Z., KRZEMIŃSKA E., CZUPYT Z., WILLIAMS I., 2015 — Sulfur isotope analysis of sulfide minerals – a remake done by SHRIMP IIe/MC. *Mineralogia*, Spec. Pap., 44: 73.
- OHMOTO H., 1986 Stable isotope geochemistry of ore deposits: stable isotopes in high temperature geological processes. *Rev. Mineral.*, 16: 491–559.
- OHMOTO H., GOLDHABER B., 1997 Sulphur and carbon Isotopes. W: Geochemistry of hydrothermal ore deposits (red. H.L. Barnes): 517–600. Wiley, New York.
- OHMOTO H., RYE R.O., 1979 Isotopes of sulfur and carbon.
   W: Geochemistry of Hydrothermal Ore Deposits, 2<sup>nd</sup> ed. (red.
   H.L. Barnes): 509–567. Wiley, New York.
- PAULO A., SALAMON W., 1974 Przyczynek do znajomości złoża polimetalicznego w Starej Górze. *Kwart. Geol.*, 18, 2: 266–276.
- SANTOSH M., MASUDA H., 1991 Reconnaissance oxygen and sulfur isotopic mapping of Pan-African alkali granites and syenites in the southern Indian Shield. *Geochem. J.*, 25: 173– 185.
- SASAKI A., ISHIHARA S., 1979 Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan. *Contrib. Miner. Petrol.*, 68: 107–115.
- SKURZEWSKI A., 1984 Wulkanity hercyńskie w rejonie Wojcieszowa. *Kwart. Geol.*, 28, 1: 39–58.
- STAUFFACHER J., 1915 Der Goldgangdistrikt von Altenberg in Schlesien. Z. Geol., 12: 53–83.
- TEISSEYRE J.H., 1973 Skały metamorficzne Rudaw Janowickich i Grzbietu Lasockiego. *Geol. Sudetica*, **8**: 7–120.

- TEISSEYRE H., 1967 Najważniejsze zagadnienia geologii podstawowej w Górach Kaczawskich. W: Przewodnik XL Zjazdu Polskiego Towarzystwa Geologicznego. Geologia i surowce mineralne Sudetów Zachodnich, Zgorzelec, 24–27 sierpnia (red. H. Teisseyre): 11–28. Wyd. Geol., Warszawa.
- USHIKUBO T., KENNETH H., WILLIFORD K.H., FARQU-HAR J., JOHNSTON D.T., VAN KRANENDONK M.J., VALLEY J.W., 2014 — Development of in situ sulfur fourisotope analysis with multiple Faraday cup detectors by SIMS and application to pyrite grains in a Paleoproterozoic glaciogenic sandstone. *Chem. Geol.*, 383: 86–99.
- WINCHESTER J.A., FLOYD P.A., CHOCYK M., HORBO-WY K., KOZDRÓJ W., 1995 — Geochemistry and tectonic environment of Ordovician meta-igneous rocks in the Rudawy Janowickie Complex, SW Poland. J. Geol. Soc., London, 152: 105–115.
- WÓJTOWICZ A., 2004 Sprawozdanie z badań izotopowych siarki siarczkowej δ<sup>34</sup>S CDT z wybranych obszarów złożowych w Sudetach. W: Geneza i wiek (Re-Os) hercyńskich złóż złota w Sudetach w świetle badań organo-geochemicznych, geochemicznych i izotopowych (C, S, O) (red. S.Z. Mikulski). Narod. Arch. Geol. PIG-PIB, Warszawa.

www.ciaaw.org/sulfur-references

- YANIGASAWA F., SAKAI H., 1983 Thermal decomposition of barium sulphate-vanadium pentoxide-silica glass mixtures for preparation of sulphur dioxide for sulphur isotope ratio measurements. *Anal. Chem.*, 55: 985–987.
- ZIMNOCH E., 1965 Okruszcowanie złoża Starej Góry w świetle nowych danych. *Biul. Geol. Wydz. Geol. UW.*, **5**: 3–38.
- ZIMNOCH E., 1983 Mineralizacja kruszcowa złoża "Czarnów" (Sudety). Rocz. Pol. Tow. Geol., 53, 1–4: 289–306.

## **SUMMARY**

Sulphide minerals from polymetallic ore deposits provide an excellent opportunity to investigate a genetic aspects of mineralization by deciphering the <sup>32</sup>S, <sup>33</sup>S, <sup>34</sup>S sulphur isotope composition. The  $\delta^{34}S$  isotopic ratio and its variation is a powerful petrogenetic indicator of sulphur source and contamination of the magma through interactions with the country rocks. The conventional method of sulphur isotope systematics performed on bulk mineral separates by gas isotope-ratio mass-spectrometry (IRMS) technique is a complex and sample consuming procedure. The stable isotope composition can be measured also using secondary ion mass spectrometry (SIMS) technique by applying instruments of various generation of the ion microprobe. In comparison to the IRMS method, the SIMS alternative avoids the chemical preparation procedure that leads to sample homogenization, therefore SIMS enables analyses on the solid state, on sub--nanogram domains with analytical spot sizes in the range of 18–20 µm and 2–3 µm depth. It allows an *in situ* exploration of every isotopic heterogeneities on a very small spatial scale, avoiding visible internal defects or other phase inclusions.

The SIMS method for  $\delta^{34}$ S analyses has been successfully applied using Sensitive High Resolution Ion Microprobe SHRIMP in a multicollector version at the PGI-NRI to:

- introduce regular measurements of the masses of sulphur isotopes <sup>34</sup>S and <sup>33</sup>S in the solid state on SHRIMP IIe/MC, through the optimization of Faraday cups tuning, analytical strategy and precise choice of reference material;
- provide a new data of δ<sup>34</sup>S for pyrites from the Au– Cu–As polymetallic ore deposits in Radzimowice (Kaczawa Mountains) and in the Leszczyniec area (Rudawy Janowickie Mts.) to determine the sources of sulphur;
- recognize the degree of homogeneity of single grains of sulphides from ore minerals;
- check the degree of reproducibility of data in terms of IRMS versus SIMS and during recurrence of analytical sessions.

In an attempt to characterise the source of sulphur mineralization analytical work was targeted on the Radzimowice Au-As-Cu ore deposit, which is located in the Kaczawa Mountains. It forms a horst structure between the North--Sudetic Basin to the northwest and the Intra-Sudetic Basin to the southeast. These areas belong to the Central-European province of Permo-Carboniferous volcanism of bimodal character, forming a 400-km-long zone. The Leszczyniec prospect is located in the Sudetes, and more precisely in the Rudawy Janowickie Ridge, that constitutes part of the eastern metamorphic cover of the Variscan Karkonosze granitoid massif. The collection of pyrite of grains from the Radzimowice and Leszczyniec Fe prospects is the focus of this paper. Part of the sample target was previously diagnosed by the conventional IRMS method (Mikulski, 2007a, b). Samples M13, M20, M21 and 10B were selected for the ion microprobe test to evaluate the accuracy and precision of sulphur isotope analysis by SHRIMP IIe/MC. Pyrite grains were cast in epoxy resin (Struers Epofix) as 35 mm "megamounts", and polished using 1200-grade SiC paper and 1 µm diamond paste. No chemical procedure for sample preparation was applied. The megamount surface was coated by 10 nm of gold, which provided charge compensation. The pyrite standard Ruttan was used during the analytical session to calibrate isotope ratios and to monitor the precision of SHRIMP IIe/MC. Analyses of reference Ruttan pyrite grains with the reference value of  $\delta^{34}S = +1.20 \pm 0.10\%$  (VCDT) gave an average of  $\delta^{34}S = +1.19 \pm 0.08\%$  with standard deviation of 0.53. All analytical results are given in Appendix.

Pyrite grain analyses were performed during two sessions: the first, which is treated as a preliminary series an average of two points in the grain with a total of measurements n =50, and the second – the main session because of the number of analyses 163 a total of 53 grains. The description includes the number of grains and a sequence analysis of the grain: *e.g.* 10B.B.3.4 denotes sample 10B, group B, grain 3, spot 4). In the case of pyrite from the abandoned Au–Cu–As Radzimowice deposit, the sulphur isotopic ratio is close to  $\delta^{34}S = 0\%$  (weighted average of  $\delta^{34}S$  for sample 10B is +0.84 ±0.24‰, n = 60, for sample M20 +0.37 ±0.13‰, n = 35, and for sample M21 –0.03 ±0.32‰, n = 26), which indicates the source of sulphur from processes related to magmas probably of mantle or lower crust origins. On the other hand, pyrites from the old mining prospect in Leszczy-niec have negative  $\delta^{34}$ S values below –1‰ (ranging from –3.24 ±0.08‰ to –1.19 ±0.09‰), which suggest a contamination process and possible minor input of sedimentary pro-

tolith during the magma generation. The results obtained during the tests on SHRIMP indicate a good agreement with the conventional method and demonstrate some differences between samples in terms of the melt generation (10B) originate from dominantly igneous protolith ( $\delta^{34}$ S values greater than 0‰) vs (M-13) partial melting some amount of sedimentary protolith ( $\delta^{34}$ S values less than 0‰).

## Apendyks

## ZESTAWIENIE WYNIKÓW ANALIZ I STOSUNEK δ<sup>34</sup>S<sub>vcdt</sub> (W ‰) Z PIERWSZEJ I DRUGIEJ SESJI NA SHRIMP IIE/MC WRAZ ZE ŚREDNIMI WAŻONYMI DLA KAŻDEJ PRÓBKI

## Próbka 10B

| Symbol                                                                   | $^{34}S/^{32}S$         | $\delta^{34}S$   | błąd standardowy | Symbol                       | $^{34}S/^{32}S$                                   | $\delta^{34}S$   | błąd standardowy |
|--------------------------------------------------------------------------|-------------------------|------------------|------------------|------------------------------|---------------------------------------------------|------------------|------------------|
| analizy                                                                  | [‰]                     |                  |                  | analizy                      |                                                   | [‰]              |                  |
| pierwsza sesja                                                           |                         |                  | 10B.B.1.3        | 0,043955459                  | -1,281                                            | ±0,105           |                  |
| 10Bpy-10                                                                 | 0,044064800             | +0,345           | ±0,291           | 10B.B.1.4                    | 0,043968482                                       | -0,999           | ±0,084           |
| 10Bpy-11                                                                 | 0,044050039             | +0,010           | ±0,279           | 10B.B.2.1                    | 0,044028623                                       | +0,339           | ±0,119           |
| 10Bpy-12                                                                 | 0,044071552             | +0,498           | ±0,237           | 10B.B.2.2                    | 0,044014514                                       | +0,007           | ±0,110           |
| 10Bpy-13                                                                 | 0,044109131             | +1,350           | ±0,377           | 10B.B.3.1                    | 0,044027950                                       | +0,300           | ±0,066           |
| 10Bpy-2                                                                  | 0,044118112             | +1,553           | ±0,354           | 10B.B.3.2                    | 0,044014270                                       | -0,023           | ±0,076           |
| 10Bpy-3                                                                  | 0,044114125             | +1,463           | ±0,388           | 10B.B.3.3                    | 0,044011260                                       | -0,102           | ±0,105           |
| 10Bpy-5                                                                  | 0,044045196             | -0,100           | ±0,297           | 10B.B.3.4                    | 0,044080530                                       | +1,459           | ±0,121           |
| 10Bpy-6                                                                  | 0,044048970             | -0,014           | ±0,346           | 10B.B.4.1                    | 0,044010280                                       | -0,146           | ±0,088           |
| 10Bpy-7                                                                  | 0,044037069             | -0,284           | ±0,401           | 10B.B.4.2                    | 0,044016830                                       | -0,008           | ±0,069           |
| 10Bpy-9                                                                  | 0,044072527             | +0,520           | ±0,262           | 10B.B.4.3                    | 0,044028080                                       | +0,237           | ±0,109           |
| średnia ważor                                                            | $ha = +0,47 \pm 0,43\%$ | [91%] 95% ufnośc | i                | 10B.B.4.4                    | 0,044031770                                       | +0,301           | ±0,088           |
| z 10 zarejestr                                                           | owanych analiz          |                  |                  | 10B.B.5.1                    | 0,043932040                                       | -1,972           | ±0,106           |
|                                                                          | dru                     | ga sesja         |                  | 10B.B.5.2                    | 0,044000100                                       | -0,436           | ±0,098           |
| 10B.A.1.1                                                                | 0,043979929             | +1,412           | ±0,112           | 10B.B.6.1                    | 0,044026910                                       | +0,164           | ±0,110           |
| 10B.A.1.2                                                                | 0,043984427             | +1,469           | ±0,053           | 10B.B.6.2                    | 0,044036160                                       | +0,365           | ±0,082           |
| 10B.A.2.1                                                                | 0,043989194             | +1,532           | ±0,094           | 10B.B.6.3                    | 0,044042110                                       | +0,492           | ±0,114           |
| 10B.A.3.1                                                                | 0,043942365             | +0,423           | ±0,112           | 10B.B.6.4                    | 0,044035200                                       | +0,327           | ±0,095           |
| 10B.A.3.2                                                                | 0,043949562             | +0,541           | ±0,073           | 10B.B.6.5                    | 0,044035190                                       | +0,320           | ±0,092           |
| 10B.A.3.3                                                                | 0,043954203             | +0,603           | ±0,074           | 10B.B.7.1                    | 0,044064330                                       | +0,974           | ±0,073           |
| 10B.A.4.1                                                                | 0,043979386             | +1,086           | ±0,068           | 10B.B.7.2                    | 0,044067760                                       | +1,038           | ±0,117           |
| 10B.A.5.1                                                                | 0,04399230              | +1,337           | ±0,072           | 10B.B.7.3                    | 0,044076500                                       | +1,230           | ±0,098           |
| 10B.A.5.2                                                                | 0,043979347             | +1,000           | ±0,102           | 10B.B.8.1                    | 0,044023960                                       | +0,032           | ±0,091           |
| 10B.A.6.1                                                                | 0,043981745             | +1,013           | ±0,064           | 10B.B.8.2                    | 0,044023840                                       | +0,023           | ±0,071           |
| 10B.A.6.2                                                                | 0,043995774             | +1,291           | ±0,103           | 10B.B.8.3                    | 0,044025470                                       | +0,055           | ±0,083           |
| 10B.A.6.3                                                                | 0,044010616             | +1,588           | ±0,108           | 10B.B.8.4                    | 0,044023450                                       | +0,004           | ±0,051           |
| 10B.A.6.4                                                                | 0,044030089             | +1,991           | ±0,036           | 10B.B.8.5                    | 0,044023940                                       | +0,010           | ±0,095           |
| 10B.A.6.5                                                                | 0,044017709             | +1,671           | ±0,065           | 10B.B.9.1                    | 0,044071490                                       | +1,084           | ±0,090           |
| 10B.A.6.6                                                                | 0,044028059             | +1,866           | ±0,085           | 10B.B.9.2                    | 0,044039180                                       | +0,347           | ±0,072           |
| 10B.A.7.1                                                                | 0,044029294             | +1,816           | ±0,081           | 10B.B.9.3                    | 0,044076490                                       | +1,185           | ±0,090           |
| 10B.A.7.2                                                                | 0,044022242             | +1,618           | ±0,068           | 10B.B.9.4                    | 0,044067730                                       | +0,983           | ±0,099           |
| 10B.A.8.1                                                                | 0,044028553             | +1,724           | ±0,089           | 10B.B.10.1                   | 0,044083900                                       | +1,346           | ±0,101           |
| 10B.A.8.2                                                                | 0,044039499             | +1,937           | ±0,076           | 10B.B.10.2                   | 0,044059240                                       | +0,783           | ±0,130           |
| 10B.A.9.1                                                                | 0,044033931             | +1,774           | ±0,095           | 10B.B.10.3                   | 0,044080560                                       | +1,264           | ±0,133           |
| 10B.A.10.1                                                               | 0,044048153             | +2,062           | ±0,087           | 10B.B.10.4                   | 0,044090170                                       | +1,479           | ±0,057           |
| 10B.A.10.2                                                               | 0,044040947             | +1,863           | ±0,117           | średnia ważo                 | średnia ważona = +0,25 ±0,26 ‰ [110%] 95% ufności |                  |                  |
| 10B.A.10.3                                                               | 0,044063067             | +2,331           | ±0,124           | z 37 zarejestrowanych analiz |                                                   |                  |                  |
| średnia ważona = $+1,52 \pm 0,21\%$ [14%] 95% ufnościdruga sesja łącznie |                         |                  |                  |                              |                                                   |                  |                  |
| z 23 zarejestr                                                           | owanych analiz          |                  |                  | 10B(A+B)                     | średnia ważona =                                  | +0,84 ±0,24‰ [28 | %] 95% ufności   |
| 10B.B.1.1                                                                | 0,043950459             | -1,367           | ±0,120           |                              | z 60 zarejestrowa                                 | nych analiz      |                  |
| 10B.B.1.2                                                                | 0,043932288             | -1,793           | ±0,098           |                              |                                                   |                  |                  |

| Symbol         | <sup>34</sup> S/ <sup>32</sup> S                 | $\delta^{34}S$ | błąd standardowy |  |  |  |
|----------------|--------------------------------------------------|----------------|------------------|--|--|--|
| analızy        |                                                  |                |                  |  |  |  |
| pierwsza sesja |                                                  |                |                  |  |  |  |
| M13py-10       | 0,043944268                                      | -2,388         | ±0,735           |  |  |  |
| M13py-11       | 0,043912306                                      | -3,113         | ±0,418           |  |  |  |
| M13py-12       | 0,043904434                                      | -3,292         | ±0,312           |  |  |  |
| M13py-13       | 0,043925859                                      | -2,806         | ±0,409           |  |  |  |
| M13py-2        | 0,043941591                                      | -2,449         | ±0,264           |  |  |  |
| M13py-3        | 0,043956622                                      | -2,108         | ±0,505           |  |  |  |
| M13py-4        | 0,043952584                                      | -2,200         | ±0,400           |  |  |  |
| M13py-5        | 0,043975119                                      | -1,689         | ±0,261           |  |  |  |
| M13py-6        | 0,043961785                                      | -1,991         | ±0,418           |  |  |  |
| M13py-7        | 0,043999082                                      | -1,146         | ±0,330           |  |  |  |
| M13py-8        | 0,043920766                                      | -2,921         | ±0,310           |  |  |  |
| M13py-9        | M13py-9 0,043931371 -2,681 ±0,339                |                |                  |  |  |  |
| średnia ważo   | średnia ważona = -2,37 ±0,42‰ [-18%] 95% ufności |                |                  |  |  |  |
| z 12 zarejest  | z 12 zarejestrowanych analiz                     |                |                  |  |  |  |
| druga sesja    |                                                  |                |                  |  |  |  |
| M13A.1.1       | 0,043899013                                      | -2,860         | ±0,139           |  |  |  |
| M13A.1.2       | 0,043940101                                      | -1,930         | ±0,091           |  |  |  |
| M13A.1.3       | 0,043923648                                      | -2,305         | ±0,095           |  |  |  |
| M13A.1.4       | 0,043928179                                      | -2,206         | ±0,059           |  |  |  |
| M13A.2.1       | 0,043931496                                      | -2,132         | ±0,113           |  |  |  |
| M13A.2.2       | 0,043968808                                      | -1,286         | ±0,068           |  |  |  |
| M13A.2.3       | 0,043973075                                      | -1,190         | ±0,087           |  |  |  |
| M13A.3.1       | 0,043897004                                      | -2,917         | ±0,079           |  |  |  |
| M13A.4.1       | 0,043920538                                      | -2,383         | ±0,135           |  |  |  |
| M13A.4.2       | 0,043916982                                      | -2,464         | ±0,084           |  |  |  |
| M13A.4.3       | 0,043949332                                      | -1,730         | ±0,063           |  |  |  |
| M13A.4.4       | 0,043967032                                      | -1,328         | ±0,102           |  |  |  |
| M13A.5.1       | 0,043927835                                      | -2,217         | ±0,046           |  |  |  |
| M13A.6.1       | 0,043951584                                      | -1,677         | ±0,076           |  |  |  |
| M13A.6.2       | 0,043939070                                      | -1,960         | ±0,044           |  |  |  |

| Symbol        | <sup>34</sup> S/ <sup>32</sup> S | $\delta^{34}S$      | błąd standardowy |  |  |  |
|---------------|----------------------------------|---------------------|------------------|--|--|--|
| analizy       |                                  | [‰]                 |                  |  |  |  |
| M13A.6.3      | 0,043943283                      | -1,863              | ±0,098           |  |  |  |
| M13A.6.4      | 0,043925268                      | -2,271              | ±0,114           |  |  |  |
| średnia ważo  | $na = -2,10 \pm 0,16\%$          | [-7,7%] 95% ufno    | ści              |  |  |  |
| z 39 zarejest | rowanych analiz                  |                     |                  |  |  |  |
| M13B.1.1      | 0,043882530                      | -3,239              | ±0,081           |  |  |  |
| M13B.1.2      | 0,043900820                      | -2,822              | ±0,087           |  |  |  |
| M13B.1.3      | 0,043888130                      | -3,108              | ±0,105           |  |  |  |
| M13B.1.4      | 0,043904870                      | -2,726              | ±0,090           |  |  |  |
| M13B.2.1      | 0,043916730                      | -2,452              | ±0,109           |  |  |  |
| M13B.3.1      | 0,043933180                      | -2,076              | ±0,106           |  |  |  |
| M13B.4.1      | 0,043916190                      | -2,459              | ±0,067           |  |  |  |
| M13B.4.2      | 0,043928690                      | -2,173              | ±0,070           |  |  |  |
| M13B.5.1      | 0,043912530                      | -2,536              | ±0,127           |  |  |  |
| M13B.5.2      | 0,043930140                      | -2,133              | ±0,113           |  |  |  |
| M13B.5.3      | 0,043917710                      | -2,412              | ±0,131           |  |  |  |
| M13B.5.4      | 0,043923830                      | -2,270              | ±0,068           |  |  |  |
| M13B.6.1      | 0,043940140                      | -1,896              | ±0,115           |  |  |  |
| M13B.6.2      | 0,043961980                      | -1,392              | ±0,114           |  |  |  |
| M13B.6.3      | 0,043952770                      | -1,597              | ±0,141           |  |  |  |
| M13B.6.4      | 0,043946210                      | -1,742              | ±0,100           |  |  |  |
| M13B.6.5      | 0,043942850                      | -1,814              | ±0,098           |  |  |  |
| M13B.7.1      | 0,043903690                      | -2,697              | ±0,111           |  |  |  |
| M13B.7.2      | 0,043946610                      | -1,719              | ±0,087           |  |  |  |
| M13B.7.3      | 0,043922910                      | -2,252              | ±0,071           |  |  |  |
| M13B.8.1      | 0,043908910                      | -2,565              | ±0,097           |  |  |  |
| M13B.8.2      | 0,043965320                      | -1,280              | ±0,058           |  |  |  |
| średnia ważo  | $ana = -2,22 \pm 0,24\%$         | [-11%] 95% ufnoś    | ci               |  |  |  |
| z 22 zarejest | rowanych analiz                  |                     |                  |  |  |  |
| druga sesja ł | ącznie                           |                     |                  |  |  |  |
| M13           | średnia ważona = -               | -2,10 ±0,16‰ [-7,79 | %] 95% ufności   |  |  |  |
| (A+B)         | z 39 zarejestrowanych analiz     |                     |                  |  |  |  |
|               |                                  | 5                   |                  |  |  |  |

## Próbka M13

72

Badania izotopów siarki w minerałach siarczkowych ze złóż rud polimetalicznych w Sudetach za pomocą mikrosondy jonowej...

Próbka M20

| Symbol                                          | $^{34}S/^{32}S$ | $\delta^{34}S$ | błąd standardowy | Symbol          | $^{34}S/^{32}S$                                  | $\delta^{34}S$    | błąd standardowy |
|-------------------------------------------------|-----------------|----------------|------------------|-----------------|--------------------------------------------------|-------------------|------------------|
| analizy                                         |                 | [‰]            |                  | analizy [‰]     |                                                  |                   |                  |
|                                                 | pierwsza sesja  |                | M20A.5.1         | 0,043989718     | +0,175                                           | ±0,150            |                  |
| M20py-10                                        | 0,044041515     | -0,183         | ±0,312           | M20A.5.2        | 0,043980991                                      | -0,049            | ±0,105           |
| M20py-11                                        | 0,044062532     | +0,293         | ±0,258           | M20A.5.3        | 0,043983092                                      | -0,028            | ±0,108           |
| M20py-12                                        | 0,044053667     | +0,092         | ±0,414           | średnia ważon   | $a = +0,46 \pm 0,17 \%$                          | [36%] 95% ufnoś   | ci               |
| M20py-13                                        | 0,044056573     | +0,158         | ±0,28            | z 16 zarejestro | owanych analiz                                   |                   |                  |
| M20py-2                                         | 0,044008364     | -0,935         | ±0,671           | M20B.1.1        | 0,043866100                                      | +0,028            | ±0,096           |
| M20py-3                                         | 0,044043445     | -0,140         | ±0,507           | M20B.2.1        | 0,043885790                                      | +0,363            | ±0,180           |
| M20py-4                                         | 0,044118332     | +1,558         | ±0,234           | M20B.2.2        | 0,043880850                                      | +0,198            | ±0,138           |
| M20py-5                                         | 0,044050054     | +0,010         | ±0,325           | M20B.2.3        | 0,043867880                                      | -0,151            | ±0,131           |
| M20py-6                                         | 0,044052478     | +0,065         | ±0,463           | M20B.3.1        | 0,043888330                                      | +0,263            | ±0,108           |
| M20py-7                                         | 0,044061654     | +0,273         | ±0,356           | M20B.4.1        | 0,043905570                                      | +0,543            | ±0,352           |
| M20py-8                                         | 0,044067801     | +0,413         | ±0,326           | M20B.4.2        | 0,043888400                                      | +0,101            | ±0,098           |
| M20py-9                                         | 0,044063147     | +0,307         | ±0,326           | M20B.5.1        | 0,043855940                                      | -0,809            | ±0,131           |
| średnia ważona = +0,37 ±0,38 [100%] 95% ufności |                 |                | M20B.5.2         | 0,043875180     | -0,424                                           | ±0,122            |                  |
| z 12 zarejestro                                 | owanych analiz  |                |                  | M20B.5.3        | M20B.5.3 0,043881110 -0,342 ±0,090               |                   | ±0,090           |
| druga sesja                                     |                 | M20B.6.1       | 0,043924220      | +0,588          | ±0,101                                           |                   |                  |
| M20A.1.1                                        | 0,0439885770    | +0,605         | ±0,040           | M20B.6.2        | 0,043929100                                      | +0,647            | ±0,060           |
| M20A.1.2                                        | 0,0439868380    | +0,497         | ±0,113           | M20B.6.3        | 0,043912620                                      | +0,222            | ±0,113           |
| M20A.1.3                                        | 0,0440053170    | +0,885         | ±0,100           | M20B.7.1        | 0,043916100                                      | +0,252            | ±0,143           |
| M20A.2.1                                        | 0,0439766620    | +0,202         | ±0,083           | M20B.7.2        | 0,043911700                                      | +0,101            | ±0,075           |
| M20A.2.2                                        | 0,0439953900    | +0,595         | ±0,117           | M20B.7.3        | 0,043923120                                      | +0,263            | ±0,087           |
| M20A.3.1                                        | 0,0439627820    | -0,176         | ±0,128           | M20B.8.1        | 0,043931320                                      | +0,401            | ±0,077           |
| M20A.3.2                                        | 0,0439866490    | +0,336         | ±0,065           | M20B.8.2        | 0,043955400                                      | +0,901            | ±0,110           |
| M20A.3.3                                        | 0,0439825960    | +0,213         | ±0,109           | M20B.8.2        | 0,043955400                                      | +0,901            | ±0,110           |
| M20A.4.1                                        | 0,0439768450    | +0,053         | ±0,084           | średnia ważon   | średnia ważona = +0,26 ±0,20 ‰ [77%] 95% ufności |                   |                  |
| M20A.4.2                                        | 0,0439998350    | +0,546         | ±0,090           | z 19 zarejestro | z 19 zarejestrowanych analiz                     |                   |                  |
| M20A.4.3                                        | 0,0440169800    | +0,877         | ±0,062           | druga sesja łąc | cznie                                            |                   |                  |
| M20A.4.4                                        | 0,0439914230    | +0,268         | ±0,132           | M20 (A   D)     | średnia ważona =                                 | +0,37 ±0,13 ‰ [34 | 1%] 95% ufności  |
| M20A.4.5                                        | 0,0440214120    | +0,922         | ±0,113           | IVI20 (A+B)     | z 35 zarejestrowar                               | nych analiz       |                  |

| Symbol                                           | $^{34}S/^{32}S$ | $\delta^{34}S$ | błąd standardowy |  |  |
|--------------------------------------------------|-----------------|----------------|------------------|--|--|
| analizy                                          |                 |                |                  |  |  |
|                                                  | pierv           | vsza sesja     |                  |  |  |
| M21py-10                                         | 0,044036574     | -0,295         | ±0,419           |  |  |
| M21py-11                                         | 0,044034305     | -0,347         | ±0,572           |  |  |
| M21py-12                                         | 0,044035361     | -0,323         | ±0,348           |  |  |
| M21py-13                                         | 0,044026050     | -0,534         | ±0,531           |  |  |
| M21py-2                                          | 0,044091174     | +0,943         | ±0,408           |  |  |
| M21py-3                                          | 0,044088591     | +0,884         | ±0,541           |  |  |
| M21py-4                                          | 0,044047053     | -0,058         | ±0,487           |  |  |
| M21py-5                                          | 0,044078603     | +0,657         | ±0,449           |  |  |
| M21py-6                                          | 0,044082517     | +0,746         | ±0,454           |  |  |
| M21py-7                                          | 0,044090592     | +0,929         | ±0,586           |  |  |
| M21py-8                                          | 0,044039043     | -0,240         | ±0,404           |  |  |
| M21py-9                                          | 0,044047778     | -0,041         | ±0,362           |  |  |
| średnia ważona = +0,15 ±0,35‰ [240%] 95% ufności |                 |                |                  |  |  |
| z 12 zarejestrowanych analiz                     |                 |                |                  |  |  |
| druga sesja                                      |                 |                |                  |  |  |
| M21p.1.1                                         | 0,043977167     | -0,189         | ±0,113           |  |  |
| M21p.1.2                                         | 0,043992562     | +0,135         | ±0,064           |  |  |
| M21p.1.3                                         | 0,043910667     | -1,749         | ±0,061           |  |  |
| M21p.2.1                                         | 0,043983994     | -0,133         | ±0,081           |  |  |
| M21p.2.2                                         | 0,043994816     | +0,089         | ±0,077           |  |  |
| M21p.2.3                                         | 0,043987605     | -0,098         | ±0,119           |  |  |

| Próbka M | 121 |
|----------|-----|
|----------|-----|

| Symbol                                           | $\frac{^{34}\mathrm{S}/^{32}\mathrm{S}}{\delta^{34}\mathrm{S}}$ |        | błąd standardowy |  |  |
|--------------------------------------------------|-----------------------------------------------------------------|--------|------------------|--|--|
| analizy                                          | [‰]                                                             |        |                  |  |  |
| M21p.2.4                                         | 0,043960632                                                     | -0,733 | ±0,085           |  |  |
| M21p.3.1                                         | 0,044048240                                                     | +1,234 | ±0,091           |  |  |
| M21p.3.2                                         | 0,044069803                                                     | +1,701 | ±0,093           |  |  |
| M21p.3.3                                         | 0,043957583                                                     | -0,868 | ±0,116           |  |  |
| M21p.4.1                                         | 0,043996087                                                     | -0,015 | ±0,137           |  |  |
| M21p.4.2                                         | 0,043994301                                                     | -0,076 | ±0,090           |  |  |
| M21p.4.3                                         | 0,043974860                                                     | -0,558 | ±0,091           |  |  |
| M21p.4.4                                         | 0,043978700                                                     | -0,490 | ±0,086           |  |  |
| M21p.4.5                                         | 0,044061570                                                     | +1,371 | ±0,063           |  |  |
| M21p.4.6                                         | 0,044012040                                                     | +0,228 | ±0,087           |  |  |
| M21p.5.1                                         | 0,044006200                                                     | +0,077 | ±0,106           |  |  |
| M21p.5.2                                         | 0,044004350                                                     | +0,017 | ±0,062           |  |  |
| M21p.5.3                                         | 0,044023050                                                     | +0,424 | ±0,112           |  |  |
| M21p.5.4                                         | 0,043998730                                                     | -0,146 | ±0,117           |  |  |
| M21p.5.5                                         | 0,044012490                                                     | +0,150 | ±0,110           |  |  |
| M21p.6.1                                         | 0,043997940                                                     | -0,213 | ±0,082           |  |  |
| M21p.6.2                                         | 0,044027350                                                     | +0,438 | ±0,074           |  |  |
| M21p.6.3                                         | 0,044001900                                                     | -0,155 | ±0,120           |  |  |
| M21p.6.4                                         | 0,043991830                                                     | -0,399 | ±0,070           |  |  |
| M21p.6.5                                         | 0,043996970                                                     | -0,297 | ±0,076           |  |  |
| średnia ważona= -0,03 ±0,32‰ [-110%] 95% ufności |                                                                 |        |                  |  |  |
| z 26 zarejestrowanych analiz                     |                                                                 |        |                  |  |  |

TABLICE PLATES

## **TABLICA I**

# Niejednorodność wewnętrzna ziaren pirytu i ślady po analizach SHRIMP widoczne w obrazie elektronów wstecznie rozproszonych w mikroskopie elektronowym

Internal heterogeneity of pyrite grains and spots after SHRIMP measurements visible on the backscattered electrons images BSE of electron microscope

- Fig. 1. Spękanie w pirycie wypełnione galeną (biała; próbka 10B.A, ziarno 6, punkty 1–6)Crack filled by galena (white; sample 10B.A, grain 6, points 1–6)
- Fig. 2.Cienkie syntektoniczne wrostki arsenopirytu (próbka 10B.B, ziarna 2–4)Thin syntectonic arsenopyrite inclusions (sample 10B.B, grains 2–4)
- Fig. 3. Silne spękania charakterystyczne dla ziarn pirytu z próbki M13, przykład obrazu z serii dokumentacyjnych fotografii SHRIMP Strong damage of pyrite grains characteristic for M13 sample, typical image from photo autodocumentation done by SHRIMP
- Fig. 4. Liczne obce fazy mineralne w pirycie (próbka M20) A variety of mineral phases present in the pyrite from (sample M20)
- Fig. 5, 6. Drobne i większe wrostki arsenopirytu (próbka M21, punkty 1 i 2 w pirycie, punkt 3 w arsenopirycie) Minor and larger arsenopyrite inclusions (sample M21, points 1 and 2 in pyrite, point 3 in arsenopyrite)



Stanisław Z. Mikulski i in. — Badania izotopów siarki w minerałach siarczkowych ze złóż rud polimetalicznych w sudetach za pomocą mikrosondy jonowej SHRIMP IIe/MC