Analyses of ichnofossils and palaeosols provide a wealth of hydrological and climatic information in continental sedimentary deposits (e.g., Driese and Foreman, 1992; Turner, 1993; Hasiotis and Dubiel, 1994; Driese et al., 1995; Birkenland, 1999; Kraus, 1999; Retallack, 2001; Driese and Mora, 2002; Prochnow et al., 2006a; Hasiotis et al., 2007a, Cleveland et al., 2008a; Dubiel and Hasiotis, 2011; Hasiotis and Platt, 2012). This study combines lithofacies, palaeosols, and ichnocoenoses of the Upper Triassic Chinle Formation (Fm) into ichnopedofacies to interpret palaeoenvironmental and palaeoclimatic variations in the north-eastern part of the Chinle Basin. Seventeen ichnofossil morphotypes and six palaeosol orders are combined into twelve ichnopedofacies, whose development was controlled by autecyclical and allocyclical processes and hydrology. Ichnopedofacies are used to estimate palaeoprecipitation in conjunction with appropriate modern analogue latitudinal and geographic settings. In the north-east Chinle Basin, annual precipitation was ~1100–1300 mm in the Petrified Forest Member. Precipitation levels were >1300 mm/yr at the base of the lower Owl Rock Member, decreased to ~700–1100 mm/yr, and then to ~400–700 mm/yr. Two drying upward cycles from ~1100 mm/yr to ~700 mm/yr occurred in the middle and upper part of the Owl Rock Member. In the overlying Church Rock Member, precipitation decreased from ~400 mm/yr at the base of the unit to ~25–325 mm/yr at the end of Chinle Formation deposition. Ichnopedofacies indicate monsoonal conditions persisted until the end of the Triassic with decreasing precipitation that resulted from the northward migration of Pangea. Ichnopedofacies in the north-east Chinle Basin indicate both long-term drying of climate and short-term, wet-dry fluctuations.

Key words: Continental, trace fossils, groundwater profile, ichnology, ichnocoenoses, ichnopedofacies, Mesozoic.

Manuscript received 24 September 2018, accepted 24 November 2018

INTRODUCTION

Analyses of ichnofossils and palaeosols provide a wealth of hydrological and climatic information in continental sedimentary deposits (e.g., Driese and Foreman, 1992; Turner, 1993; Hasiotis and Dubiel, 1994; Driese et al., 1995; Birkenland, 1999; Kraus, 1999; Retallack, 2001; Driese and Mora, 2002; Prochnow et al., 2006a; Hasiotis et al., 2007a, Cleveland et al., 2008a; Dubiel and Hasiotis, 2011; Hasiotis and Platt, 2012). This study combines lithofacies, palaeosols, and ichnocoenoses of the Upper Triassic Chinle Formation (Fm) into ichnopedofacies to interpret palaeoenvironmental conditions and palaeoclimatic changes in the north-east Chinle Basin. These interpretations, in turn, will enable more detailed reconstructions of the variability in sedimentation rate, tectonics, and climate across the basin, building a more accurate regional picture of the Chinle Fm through the Late Triassic. This is the first study to systematically integrate ichnological and pedogenic features in the Chinle Fm to determine local controls on base level, sediment deposition, pedogenesis, groundwater profile, and environments.

Palaeosols record the relative influence of soil-forming factors – climate, organisms, topography, parent material, and time (Jenny, 1941) – that modified sediments deposited on ancient landscapes (e.g., Retallack, 2001; Hasiotis, 2004, 2008; Hasiotis and Platt, 2012). Ichnofossils form through the interaction of organisms with a medium to produce three-dimensional structures influenced by such physicochemical factors as sedimentation rate, deposition of energy, groundwater profile, nutrients, and oxygenation (Hasiotis, 2007; Hasiotis et al., 2007a; Hasiotis and Platt,
Pedological and ichnological studies in the Chinle Fm have been limited in scope. Local investigations of Chinle Fm palaeosols have concentrated in the centre of the Chinle Basin around the Petrified Forest National Park (PFNP; e.g., Kraus and Middleton, 1987a; Therrien and Fastovsky, 2000; Trendell et al., 2012, 2013a, b; Atchley et al., 2013), with other studies in northern New Mexico (Cleveland et al., 2007, 2008a, b), western Colorado (Dubiel et al., 1992), and eastern Utah (Prochnow et al., 2005, 2006a, b). Much of this research utilized palaeosols to interpret fluvial architecture and sequence stratigraphy, showing that local fluvial evolution, topographic position, and salt tectonics had as great an, or even greater, influence on sedimentation and pedogenesis as did regional climate (e.g., Kraus and Middleton, 1987a; Prochnow et al., 2005, 2006b; Cleveland et al., 2007; Trendell et al., 2012, 2013a). Few palaeosol studies in the Chinle Fm, though, have been combined with ichnological observations beyond plant ichnofossils (e.g., Dubiel et al., 1992; Cleveland et al., 2008a; Dubiel and Hasiotis, 2011; Ash and Hasiotis, 2013). Despite numerous descriptions of ichnofossils from PFNP (e.g., Hasiotis and Dubiel, 1993a, b, 1995a, b; Martin and Hasiotis, 1998; Hasiotis and Martin, 1999), research beyond this area of the basin is limited (e.g., Hasiotis and Mitchell, 1993; Hasiotis et al., 1993; Hasiotis and Dubiel, 1994; Hasiotis, 1995; Gaston et al., 2003; Gillette et al., 2003), and few studies have established detailed local ichnocoenoses (Hasiotis and Dubiel, 1993b). More thorough studies combining ichnological and palaeopedological observations are imperative to interpret fine-scale climatic conditions across the Chinle Basin.

The main objectives of this study are to: 1) determine the variation of depositional systems and palaeoenvironmental settings; 2) establish ichnopedofacies and physiochemical conditions; and 3) interpret fine-scale (within member) climatic conditions in the north-eastern Chinle Basin and compare it to the regional palaeoclimate of the south-western United States. This type of detailed sedimentological study is needed to more accurately interpret the spatial and temporal differences in sediment deposition, palaeoenvironments, and climate between the edge and centre of the Chinle Basin during the Late Triassic.

GEOLOGIC SETTING

The Upper Triassic Chinle Fm was deposited in a continental back-arc basin on the western edge of Pangea between 5–30° N palaeolatitude (Fig. 1A; Van der Voo et al., 1976; Dickinson, 1981; Parrish and Peterson, 1988; Bazard and Butler, 1991). Pangea migrated north during Chinle Fm deposition and the Colorado Plateau region reached 30° N palaeolatitude by the Early Jurassic (e.g., Dubiel and Hasiotis, 2011). The dominant drainage was to the north-west, and palaeoriver systems sourced from the Ouachita orogen in Texas flowed through both the Dockum and Chinle basins (Dubiel, 1994; Riggs et al., 1996; Dickinson and Gehrels, 2008; Dubiel and Hasiotis, 2011). Sediment sources were the Uncompaghre Uplift, Amarillo-Wichita Highlands, and a magmatic arc on the western coast of Pangea that also supplied ash to the basin (Fig. 1A; e.g., Stewart et al., 1972, 1986; Blakey and Gubitosa, 1983). Concurrent salt tectonism in the Salt Anticline Region of eastern Utah and western Colorado locally affected fluvial architecture, depositional geometries, and palaeosol development (Cater, 1970; Hazel, 1994).

The Chinle Fm consists of, in ascending order, the Shinarump (SM), Monitor Butte (MB), Moss Back (MBM), Petrified Forest (PFM), Owl Rock (ORM), and Church Rock (CRM) members, and has a maximum thickness of over 500 m in the southern Four Corners area, thinning to the north-west and north-east (Fig. 1D; Stewart et al., 1972; Dubiel, 1987, 1989; Dubiel et al., 1989; Dubiel, 1994). Chinle Fm strata are separated from the Lower to Middle (?) Triassic Moenkopi Fm by the T-3 unconformity across the majority of the Colorado Plateau, and unconformably overlie the Lower Permian DeChelly Sandstone in northern Arizona (Stewart et al., 1972; Pipirinos and O’Sullivan, 1978; Dubiel and Hasiotis, 2011). The J-0 unconformity marks the boundary between the Chinle Fm and the overlying Lower Jurassic Wingate Sandstone (Pipirinos and O’Sullivan, 1978; Dubiel, 1994; Hazel, 1994).

During the Late Triassic, deposition in the Chinle Basin was influenced by a megamonsoonal climate with wet and
ICHNOFOSSIL ASSEMBLAGES AND PALAEOSOLS OF THE UPPER TRIASSIC CHINLE FORMATION

Fig. 1.
dry periods (Parrish and Peterson, 1988; Dubiel et al., 1991; Dubiel, 1994; Dubiel and Hasiotis, 2011). Conditions became more arid towards the end of Chinle Fm deposition, represented by eolian sand sheet and playa lake strata in the CRM and equivalent Rock Point Member (RPM) (Dubiel, 1989; Dubiel et al., 1991; Dubiel and Hasiotis, 2011). Chinle Fm sediments were eventually buried by migrating sand dunes of the Lower Jurassic Wingate Sandstone (Blakey and Gubitosa, 1983; Parrish and Peterson, 1988; Dubiel, 1989). The transition to drier conditions reflects the northward migration of Pangea towards the mid-latitudes (Dubiel, 1994; Cleveland et al., 2008b; Dubiel and Hasiotis, 2011).

Study area

The study area is 56 km south of Moab, Utah, near the south-eastern border of Canyonlands National Park in Stevens Canyon and Indian Creek Canyon (Fig. 1B, C). The Upper Triassic Chinle Fm is locally represented by the MB, MM, PFM, ORM, and CRM (Fig. 1E). The top of the Chinle Fm is overlain by the Lower Jurassic Wingate Sandstone (Hasiotis and Mitchell, 1993; Hasiotis et al., 1993).

The MB overlies and locally fills palaeochannels incised into the SM and unconformably overlies the Moenkopi Fm (Stewart et al., 1972; Dubiel and Hasiotis, 2011). Only the top of the MB is present in one section and consists of red, yellow, and green-grey mudstone. Volcanic ash is a significant component of sediment, as evidenced by increased amount of bentonite, altered lithic clasts, and relict glass shards. The MB is interpreted as a complex mosaic of meandering fluvial, palustrine, lacustrine, and deltaic environments (Blakey and Gubitosa, 1983; Dubiel and Hasiotis, 2011).

The MM is preserved within the Cottonwood Palaeovalley, which incised into the underlying MB and Lower Triassic Moenkopi Fm (Stewart et al., 1972; Blakey and Gubitosa, 1983; Dubiel and Hasiotis, 2011). Strata consist of brown to grey, medium-grained sandstone and carbonate-nodule conglomerate. Sandstones contain tabular-planar and trough-cross-stratification (TCS), large-scale lateral accretion, and rarer horizontal laminations, and sandbodies consist of stacked, interconnected, broad sand sheets. Depositional environments are interpreted as braided fluvial systems (Blakey and Gubitosa, 1983, 1984; Dubiel, 1989; Dubiel et al., 1991; Dubiel and Hasiotis, 2011).

The PFM overlies the MB and MB (Stewart et al., 1972; Dubiel and Hasiotis, 2011). Lithofacies consist of lavender and brown, bentonitic sandstone and variegated, carbonate-nodule-bearing mudstone. Sandstones display TCS and lateral accretion, contain thin carbonate-nodule conglomerate lenses, and occur as ribbon and narrow sheet sand bodies encased in mudstone (Blakey and Gubitosa, 1983; Dubiel, 1987, 1989). Volcanic ash is a significant component of clastic sediment. The PFM was deposited in palustrine and high-sinuosity, suspended-load fluvial environments (Blakey and Gubitosa, 1983; Dubiel, 1987; Dubiel et al., 1991).

The ORM overlies the PFM. Lithofacies consist of orange and red siltstone (Stewart et al., 1972; Dubiel, 1987).

Intraformational carbonate-nodule conglomerate lenses derived from adjacent palaeosols are present and display large-scale, lateral accretion (e.g., Dubiel and Hasiotis, 2011). The ORM was deposited in fluvial and lacustrine environments (Blakey and Gubitosa, 1983; Dubiel, 1994; Dubiel and Hasiotis, 2011).

The CRM overlies the ORM. Lithofacies consist of red, orange, and brown siltstone and sandstone, with sandstone occurring as broad sheet and ribbon sand bodies with TCS, ripple-cross-lamination, horizontal lamination, and lateral accretion (Stewart et al., 1972; Blakey and Gubitosa, 1983, 1984; Dubiel, 1989; 1994). The CRM was deposited in fluvial and playa lake environments (e.g., Dubiel, 1987; Dubiel et al., 1991).

METHODS AND MATERIALS

Eight sections (Fig. 2) were measured using a 1.5-m-long Jacobs Staff. Sedimentary facies description included unit thickness, colour, grain size, grain type, degree of sorting, sedimentary structures, and bedding morphology (e.g., Compton, 1985). Lithofacies were separated according to grain size, and further subdivided based on dominant sedimentary structures (e.g., Miall, 1996; van der Kolk et al., 2015). Facies associations were assigned according to Collinson (1986) and Miall (1996). Chinle Fm units were correlated by walking out lithofacies associations at the outcrop and by tracing them out from panoramic photos.

Ichnofossils were described by their architectural and surficial morphology, and internal fill (Hasiotis and Mitchell, 1993; Hasiotis et al., 1993; Bromley, 1996). Ichnofossils were assigned to a category of burrowing behaviour that reflects spatial position and moisture zone in the soil profile (Hasiotis, 2000, 2004, 2008; Hasiotis et al., 2007). Epiterrestrial behaviour is displayed by ichnofossils constructed on the surface of the soil profile and include trackways. Terrestrial behaviour is reflected by ichnofossils constructed above the water table near the surface of the soil-water profile and in the upper vadose zone where soils are well drained overall. Hygrophilic behaviour reflects burrow construction above the water table in the upper, intermediate, and lower vadose zone. Ichnofossils constructed in fully saturated conditions at or beneath the water table in the phreatic zone, or beneath the sediment surface in open bodies of water, display hydrophilic behaviour. Specific ichnogenera (or ichnofossils) can be assigned to more than one category. Ichnocoenoses were determined through immediate horizontal and vertical associations of ichnofossils along stratigraphic horizons, and named according to the dominant ichnogenus (or ichnofossil) present.

Palaeosols were described according to Mack et al. (1993), Kraus (1999), and Retallack (2001). Pedogenic observations included matrix colour, motting colour, horization, soil structures, slickensides, and calcium carbonate nodules. Colour was determined from fresh exposure using Munsell soil colour (Munsell Soil Colour Book, 2009). Palaeosol profiles were subdivided by horizons and designated as A (upper; zone of eluviation), B (intermediate; zone of illuviation), and C (lowest; parent material) (e.g., Retallack, 2001; Hasiotis et al., 2007a);
Fig. 2. Lithofacies of Chinle Fm. Staff in 10-cm intervals. Grain size card 15 cm tall. Rock hammer 33 cm long. A. Massive to finely laminated mudstone (F-1). B. Massive siltstone (F-2a). C. Massive siltstone to very fine-grained sandstone (F-2b). D. Planar-laminated siltstone to very fine-grained sandstone (F-2c). E. Ripple cross-laminated siltstone to very fine-grained sandstone (F-3). F. Massive to very coarse-grained sandstone (F-4a). G. Trough cross-stratified (TSC) fine- to coarse-grained sandstone (F-4b). H. Planar-laminated fine- to coarse-grained sandstone (F-4c). I. TCS conglomerate (arrow) (F-5a). J. Massive to planar-laminated conglomerate (F-5b). K. Incline-bedded conglomerate (F-5c). L. Close-up of incline-bedded conglomerate showing pebble-sized quartz and limestone clasts. Large oncoid clast from incline-bedded conglomerate.

Horizons can have shared designations based on pedogenic features present (e.g., AB, BC, AC). Calcium carbonate stages of accumulation (designated by k) were described according to Gile et al. (1966) and Machette (1985). Palaeosols were classified as entisols if primary sedimentary structures were present (Hasiotis et al., 2007a; Dubiel and Hasiotis, 2011). Inceptisols and calcic inceptisols were identified as weakly developed with incipient horizonation and calcium carbonate accumulation (sensu Mack et al., 1993) similar to stages 1–2 of calcic horizon development (Gile et al., 1966; Machette, 1985). Inceptisols were differentiated from entisols by a lack of primary sedimentary structures. Vertisols were identified by slickensides, prismatic peds, and redoximorphic colouration (Dubiel and Hasiotis, 2011). Alfisols and calcic alfisols were defined as palaeosols with elevated clay horizons (sensu Mack et al., 1993) and carbonate accumulation similar to stages 2–3 of calcic horizon development (Gile et al., 1966; Machette, 1985).
Ichnopedofacies were constructed based on the combined vertical and lateral associations of sedimentary facies, ichnofossils, and pedological features (Hasiotis et al., 2007a). First, the dominant sedimentary facies were described. Then, horizons were differentiated and the palaeosol order was determined. Next, features of the dominant ichnocoenosis present were incorporated into the pedogenic diagnosis. From this, ichnopedofacies were named by combining the names of the dominant ichnocoenosis and palaeosol (if present) comprising the unit.

In the laboratory, 22 thin sections (7.62 × 5.08 cm) impregnated with blue epoxy were observed under a Nikon Eclipse™ E600 POL petrographic polarizing light microscope (1–40×) with attached digital camera for lithological description. Pedological micromorphology was described according to Brewer (1976). Rock samples were also observed under a Nikon SMZ™ 1000 binocular scope (1–8×) for lithological and ichnological description. Descriptions from microscope supplemented field observations and aided classification of sedimentary facies, ichnocoenoses, and palaeosol orders.

Samples were crushed to under 150 µm for X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. XRD was performed on 76 samples at the University of Kansas Small Molecule X-Ray Crystallography Lab using a Bruker MicroSTAR™ diffractometer. Qualitative mineralogical data was collected with a scan rate of three, one-minute runs from 5–115° 2θ. Clay mineralogy was determined according to Moore and Reynolds (1997). XRD data was used to determine the clay mineralogy of palaeosols and to aid the identification of clay-rich horizons marking alfisols and calcic alfisols. XRF was conducted at Oneida Research Services on 30 samples to determine elemental weight percentages; values were mathematically converted to weight percent oxide and molar ratios. XRF data was used to track changes in elemental composition in palaeosol profiles and to differentiate palaeosol horizons, especially calcic horizons. Both XRD and XRF data aided in amending palaeosol classifications made in the field.

RESULTS

Lithofacies

Five distinct lithofacies consisting of 11 subfacies were identified from outcrop (Table 1). Mudstone facies contain units composed predominately of mud-sized grains and were not subdivided into subfacies. Siltstone facies were subdivided based on the presence of planar lamination and the relative amount of very fine sand grains (Fig. 2). Sandstone and conglomerate subfacies were separated based on the dominant primary sedimentary structures (Fig. 2).

Ichnoology

Seventeen ichnogenera and ichnofossils were identified (Table 2; Fig. 3). These ichnofossils form nine reoccurring ichnocoenoses across the north-east Chinle Basin (Table 3). We maintain the use of Steinichnus (i.e., S. carlsbergi; Bromely and Asgaard, 1979) and reject the synonymy of it with Spongeliomorpha (Melchor et al., 2009). We base our position on morphological criteria that distinguish Steinichnus from Spongeliomorpha. Spongeliomorpha is the morphological version of Ophiomorpha and Thalassinoioides, but with strongly longitudinal scratches, in which all three ichnogenera exhibit a three-dimensional box work or maze work of interconnected shafts and tunnels with widened areas were the tracemaker can turn around, differing only in the use of pellets as a wall lining, no wall lining, and scratches (i.e., Spongeliomorpha). Steinichnus does not exhibit any of these morphological features or criteria. Instead it is a horizontal, flattened cylinder (oval in cross-section) with secondary (produced by another tracemaker using the same tunnel but going in another direction to form an apparent branch) and pseudobranching (produced by a cross-cutting burrow of the same or similar morphology), with strongly transverse to weakly longitudinal striations on the floor and sides of the burrow wall with no fill or chaotic fill of the burrow; the top of the burrow may be pustulose or knobby and show no scratches (Bromley and Asgaard, 1979; Hasiotis, 2002; Bohacs et al., 2007; Smith et al., 2009). Thus, we consider Steinichnus and Spongeliomorpha to be two distinctly different ichnogenera with unique morphological features.

Palaeosols

Six types of palaeosols were identified by pedogenic development: entisols, inceptisols, vertisols, calcic inceptisols, alfisols, and calcic alfisols (Table 4). Every member of the Chinle Fm shows some degree of pedogenic modification.

Entisols: Profiles consist of compound AC and C horizons. Roots and burrows penetrate parent material, which display primary sedimentary structures. Entisols contain the highest variety of ichnocoenoses, but most consist of horizontal, shallow burrows (Tables 3, 4). Entisols are present in the MM, PFM, ORM, and CRM.

Inceptisols: These have compound, composite, and cumulative A-C and AC profiles. Inceptisols are observed in the PFM, ORM, and CRM.

Calcic inceptisols: These consist of composite ABk, A-ABk-AB, A-AB-ABk, and A-AB-Bk-C profiles. ABk and Bk horizons are 55–95 cm thick and reach stages 1–2 of calcic palaeosol development. Carbonate accumulation manifests as nodules 5–8 mm in diameter; horizons have weight percent CaO from 51.78%–99.50%. Calcic horizons commonly overprint each other to form composite palaeosol profiles. Calcic inceptisols are present in the PFM, ORM, and CRM.

Vertisols: These consist of cumulative A-Bss profiles. Strong redoximorphic motting is present in Bss horizons. Vertisols occur only in the ORM.

Alfisols: These consist of composite and cumulative A-Bt and A-AB-Bt profiles. Bt horizons are characterized by illite and montmorillonite. Alfisols occur only in the ORM.

Calcic alfisols: These consist of composite A-Btk and A-Bt-Btk profiles. Btk horizons are characterized by illite and montmorillonite and increased calcium accumulations. Btk horizons are 0.12–3 m thick and contain illite and montmorillonite. Calcium carbonate accumulation match stages 2–3
<table>
<thead>
<tr>
<th>Facies</th>
<th>Lithology</th>
<th>Thickness</th>
<th>Sediment grain size and texture</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-1</td>
<td>Massive to finely laminated, red, pale red, brown, and green-grey mudstone</td>
<td>0.3–4.75-m</td>
<td>Mud with rare silt and very fine sand; subangular to subrounded; moderately to well-sorted</td>
<td>Mud; silt and sand grains comprised of quartz and calcite; calcium carbonate cement</td>
</tr>
<tr>
<td>F-2a</td>
<td>Massive red, pale red, and green-grey siltstone</td>
<td>0.02–12.0-m</td>
<td>Silt with mud and very fine sand; grains angular to subrounded; moderately to well-sorted</td>
<td>Silt and sand grains comprised of quartz, calcite, and siltstone clasts; variable mud between grains; Fe and Mn nodules ranging from <0.1-mm to 0.3-mm in diameter; calcium carbonate cement</td>
</tr>
<tr>
<td>F-2b</td>
<td>Massive, red, pale red, and brown siltstone to sandstone</td>
<td>0.1–5.4-m</td>
<td>Silt with very fine sand and mud; subangular to subrounded; moderately to well-sorted</td>
<td>Silt and sand grains comprised of quartz, calcite, siltstone clasts, and rare muscovite; variable mud between grains, Fe and Mn nodules <0.1-mm in diameter; calcium carbonate cement</td>
</tr>
<tr>
<td>F-2c</td>
<td>Planar-laminated, red, pale red, and brown siltstone to sandstone</td>
<td>0.02–2.5-m</td>
<td>Silt with very fine sand and mud; angular to subrounded; moderately to well-sorted</td>
<td>Silt and sand grains comprised of quartz, calcite, and siltstone clasts; variable mud between grains, often draped along laminations; Fe and Mn nodules <0.1-mm in diameter; calcium carbonate cement</td>
</tr>
<tr>
<td>F-3</td>
<td>Ripple-cross-laminated, red, pale red, brown, and green-grey siltstone to sandstone</td>
<td>0.02–7.5-m</td>
<td>Very fine to medium sand with silt and mud; subangular to subrounded; moderately to well-sorted</td>
<td>Silt and sand grains comprised of quartz, calcite, siltstone clasts, and rare muscovite; variable mud between grains, often draped along laminations; Fe and Mn nodules <0.1-mm in diameter; calcium carbonate cement</td>
</tr>
<tr>
<td>F-4a</td>
<td>Massive, red, brown, and green-grey sandstone</td>
<td>0.1–2.0-m</td>
<td>Fine to very coarse sand; subrounded to rounded; well-sorted</td>
<td>Sand grains comprised of quartz, siltstone clasts, lithic fragments, and limestone clasts; Fe and Mn nodules <0.1-mm in diameter; calcium carbonate cement</td>
</tr>
<tr>
<td>F-4b</td>
<td>Trough-cross-stratified, brown sandstone</td>
<td>0.9–2.0-m</td>
<td>Very fine to coarse sand; grains subrounded to angular; moderately sorted</td>
<td>Sand grains comprised of quartz, lithic clasts, muscovite, and feldspar; quartz grains show overgrowth cement; Fe and Mn nodules <0.1-mm in diameter</td>
</tr>
<tr>
<td>F-4c</td>
<td>Planar-laminated, brown, and green-grey sandstone</td>
<td>0.04–6.7-m</td>
<td>Fine to coarse sand with silt and mud; subangular to rounded; moderately to well-sorted</td>
<td>Sand and silt grains comprised of quartz, siltstone clasts, lithic fragments, and limestone clasts; variable mud and siltstone between sand grains; Fe and Mn nodules <0.1-mm in diameter; calcium carbonate cement</td>
</tr>
<tr>
<td>F-5a</td>
<td>Trough-cross-stratified, brown and green-grey conglomerate</td>
<td>0.2–2.1-m</td>
<td>Granule to cobble clasts; poorly sorted</td>
<td>Quartz, lithic, and limestone clasts; Fe nodules <0.1-mm in diameter</td>
</tr>
<tr>
<td>F-5b</td>
<td>Massive to planar-laminated, red, brown, and green-grey conglomerate</td>
<td>0.01–2.1-m</td>
<td>Granule to pebble clasts; poorly sorted</td>
<td>Quartz, siltstone, lithic, and limestone clasts; calcium carbonate cement</td>
</tr>
<tr>
<td>F-5c</td>
<td>Incline-bedded, brown and green-grey conglomerate</td>
<td>0.75-m</td>
<td>Granule to pebble clasts; poorly sorted; beds graded and show lateral accretion</td>
<td>Quartz, limestone, and lithic clasts, oncoids up to 3.5-cm x 12-cm in diameter</td>
</tr>
</tbody>
</table>
Table 2

Chinle Formation ichnofossils. Abbreviations of stratigraphic units: CRM – Church Rock Member; ORM – Owl Rock Member; PFM – Petrified Forest Member.

<table>
<thead>
<tr>
<th>Ichnofossil</th>
<th>Size</th>
<th>Description</th>
<th>Interpretation</th>
<th>Behavior</th>
<th>Stratigraphic position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arenicolites</td>
<td>openings 2–7-mm diameter, 2–10-mm apart</td>
<td>Vertical, cylindrical shafts connected by a horizontal cylindrical tunnel to form a U-shape; paired cylindrical openings; smooth walls; convex epirelief</td>
<td>Morphology typical of U-shaped, freshwater mayfly burrows (e.g., Wallace and Merritt, 1980; Kureck, 1996; Hasiotis, 2002, 2004, 2008)</td>
<td>Hydrophilic</td>
<td>ORM</td>
</tr>
<tr>
<td>Ancorichnus</td>
<td>4-mm diameter</td>
<td>Horizontal tunnels with smooth wall linings and meniscate backfill; tunnels do not branch; concave and convex epirelief</td>
<td>Morphology typical of Mesozoic continental examples; beetle larvae? (e.g., Frey et al., 1984; Hasiotis, 2002, 2004, 2008; Smith et al., 2008a)</td>
<td>Hygrophilic</td>
<td>ORM</td>
</tr>
<tr>
<td>Camborygma</td>
<td>0.6–12-cm diameter, up to 185-cm long</td>
<td>Vertical to subvertical, cylindrical to J-shaped shafts; branching and chamber development; walls lined or unlined; surficial scratch and scrape marks; full relief or concave epirelief</td>
<td>Morphology typical of present-day and ancient freshwater crayfish burrows (e.g., Hobbs, 1981; Hasiotis and Mitchell, 1993; Hasiotis et al., 1993; Hasiotis and Honey, 2000; Smith et al., 2008c)</td>
<td>Hydrophilic</td>
<td>PFM, ORM</td>
</tr>
<tr>
<td>Cylindricum</td>
<td>2–7-mm diameter</td>
<td>Vertical, test-tube-shaped shafts with rounded lower ends; cylindrical openings in map view; convex epirelief</td>
<td>Morphology typical of vertical insect burrows; various beetles (e.g., Stanley and Fagerstrom, 1974; Ratcliffe and Fagerstrom, 1980; Hasiotis, 2002)</td>
<td>Terraphilic</td>
<td>PFM, ORM, CRM</td>
</tr>
<tr>
<td>Fictovichnus</td>
<td>1.5-cm diameter, up to 3-cm long</td>
<td>Ovoid capsules; walls smooth or show high density pattern of transverse scratch marks; full relief</td>
<td>Morphology typical of present-day insect cocoons (e.g., Johnston et al., 1996; Vittum et al., 1999; Hasiotis, 2002, 2003; Counts and Hasiotis, 2009)</td>
<td>Terraphilic</td>
<td>ORM</td>
</tr>
<tr>
<td>Naktodemasis</td>
<td>0.5–6-mm diameter</td>
<td>Subvertical to subhorizontal, unlined, tunnels of meniscate-backfilled packages; menisci thin, tightly spaced, ellipsoidal; tunnels straight to sinuous; unbranched; do not weather differentially from matrix</td>
<td>Burrow morphology similar to extant Scarabaeidae beetle larvae and Cicadidae nymph burrows in present-day soils (e.g., Hasiotis and Dubiel, 1994; Smith and Hasiotis, 2008; Smith et al., 2008a, b; Counts and Hasiotis, 2009, 2014; Hasiotis, 2008)</td>
<td>Terraphilic, hygrophilic</td>
<td>PFM, ORM</td>
</tr>
<tr>
<td>Planolites</td>
<td>3–14-mm diameter</td>
<td>Horizontal to subhorizontal, simple, unlined, unbranched, cylindrical tunnels; cylindrical openings in cross section</td>
<td>Morphology typical of Paleozoic and Mesozoic examples (e.g., Pemberton and Frey, 1982; Hammersburg et al., 2018)</td>
<td>Hydrophilic</td>
<td>All mbrs</td>
</tr>
<tr>
<td>Rhizocretions</td>
<td>2–7-cm diameter, up to 3-m long</td>
<td>Vertical, infilled shafts, taper towards bottom; infill same as matrix and/or CaCO3 nodules, cement; irregular bumpy surface; full relief</td>
<td>Morphology typical of present-day and ancient concretions around roots (e.g., Klappa, 1980; Hasiotis, 2002; Kraus and Hasiotis, 2006)</td>
<td>Terraphilic</td>
<td>PFM, ORM</td>
</tr>
<tr>
<td>Rhizohaloes</td>
<td>0.4–8-cm diameter, 1-m long</td>
<td>Vertical to subvertical halo surrounding root trace; original root material absent</td>
<td>Morphology typical of Mesozoic rhizohaloes (e.g., Hasiotis, 2002; Kraus and Hasiotis, 2006)</td>
<td>Terraphilic</td>
<td>All mbrs</td>
</tr>
</tbody>
</table>
Chinle Formation ichnofossils. For abbreviations of stratigraphic units, see part 1 of this table.

<table>
<thead>
<tr>
<th>Ichnofossil</th>
<th>Size</th>
<th>Description</th>
<th>Interpretation</th>
<th>Behavior</th>
<th>Stratigraphic position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizoliths</td>
<td>1- to <7-mm diameter, up to 60-cm long</td>
<td>Vertical to subvertical, sinuous traces; dendritic branching; crosscut; taper towards base; can contain fragments of original root material and matrix filled</td>
<td>Morphology typical of present-day and ancient rhizoliths (e.g., Klappa, 1980; Retallack, 2001; Hasiotis, 2002, 2004, 2008; Knaus and Hasiotis, 2006; Smith et al., 2008b)</td>
<td>Terraphilic</td>
<td>All mbrs</td>
</tr>
<tr>
<td>Rhizotubules</td>
<td>6–9-cm diameter, 20–60-cm long</td>
<td>Vertical to subvertical, CaCO3, cylindrical, nodular tubes, branch, taper towards base</td>
<td>Morphology typical of present-day rhizotubules (e.g., Klappa, 1980; Kraus and Hasiotis, 2006)</td>
<td>Terraphilic</td>
<td>ORM</td>
</tr>
<tr>
<td>Scoyenia</td>
<td>1–6-mm diameter</td>
<td>Horizontal to subhorizontal, straight to sinuous, unlined, meniscate-backfilled tunnels; ropey texture of overlapping scratch marks; unbranched, crosscut; meniscate packages thin, tightly spaced; convex epirelief</td>
<td>Burrow morphology similar to extant burrows of beetle and dipteran larvae in soils and sediments (e.g., Frey et al., 1984; Hasiotis and Dubiel, 1995a; Hasiotis, 2002; Hasiotis et al., 2012)</td>
<td>Hygrophilic</td>
<td>PFM, ORM, CRM</td>
</tr>
<tr>
<td>Skolithos</td>
<td>2–5.5-mm diameter, 3.5–12-cm long</td>
<td>Vertical, simple, straight, cylindrical shafts; walls smooth</td>
<td>Morphology produced by multiple organisms (e.g., Hasiotis, 2002, 2004, 2008; Hasiotis et al., 2012)</td>
<td>Terraphilich hygrophilic</td>
<td>ORM</td>
</tr>
<tr>
<td>Steinichnus</td>
<td>4–9-mm diameter</td>
<td>Horizontal, cylindrical, sinuous tunnels; width varies across a single tunnel; branch and cross cut; structureless tunnel fill; convex epirelief</td>
<td>Burrow morphology similar to extant mud-loving beetle and mole cricket burrows (e.g., Ratcliffe and Fagerstrom, 1980; Bromley and Asgaard, 1979; Hasiotis, 2002; Hasiotis et al., 2012)</td>
<td>Hygrophilic</td>
<td>ORM</td>
</tr>
<tr>
<td>Tetrapod footprint</td>
<td>9–20-cm long, 4–11-cm deep</td>
<td>Only seen in cross section; footprint preserved as depressions that deform underlying bedding</td>
<td>Morphology typical of tetrapod tracks in Paleozoic and Mesozoic strata (e.g., Hasiotis, 2002; Hasiotis et al., 2007b)</td>
<td>Epiterraphilic</td>
<td>PFM, CRM</td>
</tr>
<tr>
<td>Therapsid burrow</td>
<td>6–16-cm diameter, 215-cm long</td>
<td>Vertical to subvertical, helical and cylindrical shafts; walls with V-shaped scratch marks; full relief</td>
<td>Morphology typical of therapsid burrows in Paleozoic and Mesozoic strata (e.g., Smith, 1987; Hasiotis et al., 2007b)</td>
<td>Terraphilic</td>
<td>PFM, ORM</td>
</tr>
<tr>
<td>Treptichnus</td>
<td>7-mm diameter</td>
<td>Horizontal tunnels with shallow, U-shaped segments that form a zig-zag or irregular pattern; forked where segments connect; convex epirelief</td>
<td>Dipteran larva or pupa trail searching for appropriate moisture level to complete pupation (e.g., Getty et al., 2016; Hammersburg et al., 2018)</td>
<td>Hygrophilic</td>
<td>ORM</td>
</tr>
</tbody>
</table>
Fig. 3. Chinle Fm ichnofossils. Rock hammer 33 cm long A. Ancorichnus (An), Arenicolites (Ar), and Treptichnus (Tr). B. Branching form of Camborygma (Ca). C. Camborygma (Ca) with a straight, cylindrical morphology. D. Cylindricum (Cy). E. Fictovichnus (Fv). F. Naktodemasis (Nk). G. Planolites (Pl). H. Tetrapod footprint (Tf). I) Rhizocretion (Rc). J) rhizolith (Rh). K) Rhizotubule (Rt). L) Scoyenia (Sc). M. Skolithos (Sk). N. Steinichnus (St). O. Therapsid burrows (Tb).
Continuous sandstone and conglomerate beds. FA-4 forms the siltstone, ripple-cross-laminated sandstone, and laterally discontinuous siltstone; large oncoids are common as clasts. FA-3 is common in thin, laterally discontinuous, ribbon sand bodies encased in ORM. Conglomerate beds have erosive bases and occur as extensive sand sheets. FA-2 is most abundant in the middle TCS sandstone occurs as stacked, interconnected, laterally extensive sand sheets. FA-1 is most abundant in the MM and also abundant in the CRM, where transition on the alluvial plain (Table 5; Fig. 4). FA-1 is most occurring facies associations from proximal to distal position on the alluvial plain (Table 5; Fig. 4). FA-1 is most abundant in the MM and also abundant in the CRM, where TCS sandstone occurs as stacked, interconnected, laterally extensive sand sheets. FA-2 is most abundant in the middle ORM. Conglomerate beds have erosive bases and occur as thin, laterally discontinuous, ribbon sand bodies encased in siltstone; large oncoids are common as clasts. FA-3 is common in the ORM, consisting of stacks of interbedded massive siltstone, ripple-cross-laminated sandstone, and laterally discontinuous sandstone and conglomerate beds. FA-4 forms the majority of the PFM and ORM and is also observed in the CRM, and consists of fine siliciclastic facies. FA-5 is rarely observed in the PFM and ORM and consists of planar-laminated mudstone and siltstone with ichnofossils along bedding planes. FA-6 is only observed in the CRM, consists of planar-laminated siltstone and very fine sandstone, and is the least abundant facies association. FA-6 is differentiated from FA-5 by rare to absent ichnofosses and palaeosols.

Ichnocoenoses

<table>
<thead>
<tr>
<th>Ichnocoenoses</th>
<th>Ichnofossils</th>
<th>Facies</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1. Camborygma</td>
<td>Camborygma, Naktdemasis, rhizohaloes, and rhizoliths; rare therapsid burrows, Scoyenia, tetrapod tracks, Cylindricum, and Skolithos</td>
<td>F-2a, F-2b, F-2c, F-3, F-4a</td>
</tr>
<tr>
<td>I-2. Cylindricum</td>
<td>Cylindricum and Scoyenia</td>
<td>F-2c, F-3</td>
</tr>
<tr>
<td>I-3. Naktdemasis</td>
<td>Naktdemasis, rhizohaloes, rhizoliths; rare Camborygma and Planolites</td>
<td>F-2a, F-3</td>
</tr>
<tr>
<td>I-4. Naktdemasis–Camborygma</td>
<td>Naktdemasis, Camborygma, rhizoliths, and Scoyenia; rare Ancorichnus, Arenicolites, Cylindricum, Planolites, and Treptichnus</td>
<td>F-2a, F-2b, F-3</td>
</tr>
<tr>
<td>I-5. Rhizolith</td>
<td>Rhizohaloes, rhizoliths, rhizocretions, rhizotubules; rare Planolites, Naktdemasis, and Skolithos</td>
<td>F-1, F-2a, F-2b, F-2c, F-3, F-4a</td>
</tr>
<tr>
<td>I-6. Scoyenia</td>
<td>Scoyenia and rhizoliths; rare Cylindricum, Planolites, and Camborygma</td>
<td>F-2a, F-3</td>
</tr>
<tr>
<td>I-7. Skolithos</td>
<td>Skolithos; rare Planolites and Naktdemasis</td>
<td>F-2c</td>
</tr>
<tr>
<td>I-8. Steinichnus</td>
<td>Steinichnus; rare rhizoliths</td>
<td>F-1, F-4b</td>
</tr>
<tr>
<td>I-9. Therapsid</td>
<td>Therapsid burrows, Camborygma, rhizohaloes, rhizoliths; rare Cylindricum, Scoyenia, and Naktdemasis</td>
<td>F-2a, F-2b</td>
</tr>
</tbody>
</table>

of calcic palaeosol development with nodules 0.5–2.0 cm in diameter; horizons have weight percent CaO of 66.64%–87.43%, Calcic alfisols only occur in the ORM.

Facies associations

Lithofacies, ichnocoenoses, and palaeosols form six recurring facies associations from proximal to distal position on the alluvial plain (Table 5; Fig. 4). FA-1 is most abundant in the MM and also abundant in the CRM, where TCS sandstone occurs as stacked, interconnected, laterally extensive sand sheets. FA-2 is most abundant in the middle ORM. Conglomerate beds have erosive bases and occur as thin, laterally discontinuous, ribbon sand bodies encased in siltstone; large oncoids are common as clasts. FA-3 is common in the ORM, consisting of stacks of interbedded massive siltstone, ripple-cross-laminated sandstone, and laterally discontinuous sandstone and conglomerate beds. FA-4 forms the majority of the PFM and ORM and is also observed in the CRM, and consists of fine siliciclastic facies. FA-5 is rarely observed in the PFM and ORM and consists of planar-laminated mudstone and siltstone with ichnofossils along bedding planes. FA-6 is only observed in the CRM, consists of planar-laminated siltstone and very fine sandstone, and is the least abundant facies association. FA-6 is differentiated from FA-5 by rare to absent ichnofosses and palaeosols.

Ichnopedofacies

Shallowly burrowed entisol (IPF I): Compound AC horizons with primary sedimentary structures within crevasse-splay and levee (FA-3) and palustrine (FA-5) deposits that contain at least one of these ichnofosses: Cylindricum, Scoyenia, Skolithos, or Steinichnus (Tables 3–5; Fig. 5A–C). The Cylindricum ichnofoss is common in planar- and ripple-cross-laminated siltstone to very fine sandstone (F-2c and F-3) with abundant desiccation cracks. The Scoyenia ichnofoss is mainly associated with massive siltstone (F-2a) and ripple-cross-laminated siltstone to fine sandstone (F-3). The Skolithos ichnofoss is associated with lens-shaped sandstone bodies that display planar-laminated bedding (F-2c), whose base is erosional with a thin bed of conglomerate and surrounded by fine-grained strata. The Steinichnus ichnofoss occurs in planar-laminated mudstone (F-1) with abundant desiccation cracks. Ichnofosses primarily occur along bedding planes and penetrate <12 cm into the sediment.

Rhizolith entisol (IPF II): Compound AC horizons with the rhizolith ichnofoss (Tables 3–5; Fig. 5D–F) in ripple-cross-laminated sandstone (F-3), massive medium sandstone (F-4a), and massive pebble conglomerate (F-5b) within braided-river (FA-1) and crevasse-splay and levee (FA-3) deposits. Ripple-cross-laminated sandstone commonly occurs above laterally extensive, stacked, TCS sandstone. Massive medium sandstone and pebble conglomerate bodies form thin, laterally extensive sheets with erosive bases. Red-brown rhizoliths and green-grey rhizohaloes occur along bedding planes associated with lithofacies F-4a and F-5b. Deeper penetrating green-grey rhizohaloes, 15–70-cm deep and 18–85-cm long, occur with Planolites in lithofacies F-3.

Camborygma entisol (IPF III): Compound AC horizons and the Camborygma ichnofoss (Tables 3–5; Fig. 6A–C) in ripple-cross-laminated siltstone and sandstone (F-3), massive medium–coarse sandstone (F-4a), and massive pebble conglomerate (F-5b) within crevasse-splay and levee deposits (FA-3). Massive sandstones and conglomerates have thin, laterally extensive sheet morphologies. Camborygma is ≤0.5-m deep and long in massive, medium sandstone to pebble conglomerate. Camborygma
Table 4

Chinle Formation palaeosols.

<table>
<thead>
<tr>
<th>Palaeosol order</th>
<th>Horizons</th>
<th>Munsell colours and codes</th>
<th>Common pedogenic features</th>
<th>Facies</th>
<th>Ichnocoenoses</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1. Entisol</td>
<td>AC, C</td>
<td>Red (10R 5/4, 2.5YR 5/6), pale red (10R 6/3, 6/2), red brown (2.5YR 4/3), and green grey (Gley 1/10GY); mottle colours of pale-red (10R 7/3), brown (2.5Y 7/3, 2.5YR 7/3), yellow (5Y 6/8, 2.5Y 7/8), and green-grey (Gley 1 7/10Y) reduction haloes</td>
<td>Primary bedding and sedimentary structures present; bedding disrupted by roots and burrows</td>
<td>F-2c, F-3, F-4a, F-4b</td>
<td>1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8</td>
</tr>
<tr>
<td>P-2. Inceptisol</td>
<td>A, AC, C</td>
<td>Red (10R 4/3, 2.5YR 4/6, 5/6) and red brown (2.5YR 3/4, 4/4); mottle colours of pale red (10R 6/3) and green-grey (Gley 1 7/10Y) reduction haloes</td>
<td>Weak horizon development; A horizon has angular blocky and granular peds</td>
<td>F-1, F-2a, F-2b</td>
<td>1-3, 1-5</td>
</tr>
<tr>
<td>P-3. Calcic Inceptisol</td>
<td>A, AB, ABk, Bk, C</td>
<td>A—Red (2.5YR 4/5, 5/6), pale red (10R 6/2), red brown (5R 5/3, 4/4, 2.5YR 4/4), brown (7.5YR 4/2); mottle colours of red (10R 4/2), yellow (5YR 6/6, 10YR 7/3, 2.5YR 4/3), grey (10R 7/1) and green-grey (Gley 1 7/10Y, Gley 1 8/10GY) reduction haloes; AB—Red (10R 5/6) and red brown (10R 4/3); mottle colours of green-grey (Gley 1 7/10Y) reduction haloes; ABk, Bk—Red (10R 5/6, 2.5YR 5/4) and pale red (10R 4/3, 5/2); mottle colours of red (2.5R 3/6), pale red (10R 6/2), red-brown (2.5R 5/4), yellow (5YR 6/6, 10YR 7/3, 2.5YR 4/3) and green-grey (Gley 1 7/10Y) reduction haloes</td>
<td>A horizon has angular blocky and granular peds; AB horizon has angular blocky and granular peds, redder than overlying A horizon; ABk and Bk horizons have angular blocky and granular peds, Stages 1–2 calcium carbonate accumulation; green-grey reduction haloes</td>
<td>F-2a, F-2b</td>
<td>1-1, 1-3, 1-9</td>
</tr>
<tr>
<td>P-4. Vertisol</td>
<td>A, Bss</td>
<td>A—Pale red (5R 5/3); yellow (2.5Y 7/4) rhizohaloes; Bss—Pale red (5R 5/3) and green grey (Gley 1 7/10GY)</td>
<td>A horizon has angular blocky and prismatic peds; Bss horizon has prismatic peds, large slickensides; red, yellow, and green-grey mottles</td>
<td>F-2a</td>
<td>1-1</td>
</tr>
<tr>
<td>P-5. Alfisol</td>
<td>A, AB, Bt</td>
<td>A—Red (2.5YR 5/6, 10R 6/4, 5/6); mottle colours of green-grey (Gley 1 7/10Y) reduction haloes; AB—Red brown (2.5YR 4/4); mottle colours of green-grey (Gley 1 7/10GY) reduction haloes; Bt—Red (10R 4/6, 5/6) and red brown (2.5YR 3/3); mottle colours of green-grey (Gley 1 7/10Y) reduction haloes</td>
<td>A horizon has angular blocky and granular peds; Bt horizon has angular blocky, wedge, and granular peds, clay accumulation, and slickensides; green-grey reduction haloes</td>
<td>F-2a, F-2b</td>
<td>1-1, 1-3, 1-4, 1-5</td>
</tr>
<tr>
<td>P-6. Calcic Alfisol</td>
<td>A, Bt, Btk</td>
<td>A—Red (10R 5/4), pale red (10R 6/3), and red brown (7.5YR 5/2); mottle colours of red (10R 5/6), grey (10YR 7/2), and green-grey (Gley 1 7/10GY) reduction haloes; Bt—Red (2.5YR 5/6); mottle colours of red-brown (2.5YR 6/4, 7/3) and green-grey (Gley 1 5G8/1) reduction haloes; Btk—Red (10R 4/4, 5/3, 5/4), pale red (10R 6/3), and grey (10R 6/1); mottle colours of red (2.5YR 5/6, 10R 5/3), red-brown (2.5YR 7/3), and green-grey (Gley 1 8/10GY) reduction haloes</td>
<td>A horizon has angular blocky peds; Bt horizon has angular blocky peds, clay accumulation; Btk horizon has angular blocky peds, clay accumulation, sparse to numerous Stages 2–3 calcium carbonate nodules, rare slickensides; green-grey reduction haloes</td>
<td>F-2a, F-2b</td>
<td>1-1, 1-3, 1-5, 1-9</td>
</tr>
</tbody>
</table>
Table 5

Chinle Formation facies associations.

<table>
<thead>
<tr>
<th>Facies association</th>
<th>Lithofacies</th>
<th>Ichnocoenoses</th>
<th>Palaeosols</th>
<th>Other features</th>
<th>Palaeoenvironment</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA-1</td>
<td>F-2a, F-3, F-4b, F-4c, F-5a, F-5b</td>
<td>I-5</td>
<td>P-1</td>
<td>Prevalence of coarse-grained lithofacies and trough-cross-stratification; sand bodies form interconnected, stacked, laterally extensive sand sheets; contain wood fragments and log casts; basal erosive contact</td>
<td>Braided river</td>
</tr>
<tr>
<td>FA-2</td>
<td>F-5c</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA-3</td>
<td>F-2a, F-2c, F-3, F-4a, F-5b</td>
<td>I-1, I-2, I-4, I-6, I-7</td>
<td>P-1</td>
<td>Interbedded ripple-cross-laminated sandstone and siltstone; thin, laterally discontinuous sand sheet and ribbon sand bodies; basal erosive contact</td>
<td>Crevasse splay and levee</td>
</tr>
<tr>
<td>FA-4</td>
<td>F-1, F-2a, F-2b, F-2c, F-3, F-4a</td>
<td>I-1, I-3, I-5, I-9</td>
<td>P-1, P-2, P-3, P-4, P-5, P-6</td>
<td>Predominance of fine-grained lithofacies; high variety of ichnofossils; well-developed palaeosols</td>
<td>Overbank and floodplain</td>
</tr>
<tr>
<td>FA-5</td>
<td>F-1, F-2a, F-2c</td>
<td>I-1, I-2, I-5, I-8</td>
<td>P-1, P-2</td>
<td>Planar-laminated siltstone and very fine-grained sandstone; disruption of bedding by tetrapod tracks and rhizoliths; shallow, horizontal burrows along bedding planes; Neocalamites</td>
<td>Palustrine</td>
</tr>
<tr>
<td>FA-6</td>
<td>F-2a, F-2c</td>
<td>N/A</td>
<td>N/A</td>
<td>Planar-laminated siltstone and very fine-grained sandstone; rare ichnofossils; desiccation cracks</td>
<td>Lacustrine</td>
</tr>
</tbody>
</table>

is up to 1.3-m deep and 1.45-m long in ripple-cross-laminated sandstone. *Skolithos* is also associated with *Camborygma* in F-3.

Naktodemasis-Camborygma entisol (IPf IV): Stacked red, compound AC horizons with the *Naktodemasis-Camborygma* ichnocoenosis (Tables 3–5; Fig. 6D–G) in ripple-cross-laminated very fine sandstone (F-3) within crevasse-splay and levee deposits (FA-3). *Camborygma* is 20–45-cm deep and 25–55-cm long. *Naktodemasis* is 2–5 mm in diameter, overprints the *Camborygma* fill, and penetrates the sediment within beds and between beds. *Scyvenia* are 3–5.5 mm in diameter and are restricted to bedding planes. Green-grey rhizohaloes extend along bedding planes, are 5–20-cm deep, and 6–25-cm long. Only this ichnopedofacies contains occurrences of *Arenicolites, Ancorichnus*, and *Treptichnus*.

Rhizolith inceptisol (IPf V): Compound A and AC profiles and the rhizolith ichnocoenosis (Tables 3–5; Fig. 7A–C) in red and red-brown, massive siltstone to very fine sandstone (F-2b) within floodplain deposits (FA-4). Red-brown rhizoliths are up to 16.5-cm deep and 17.5-cm long. Green-grey rhizohaloes are up to 25-cm deep and 26-cm long.

Naktodemasis inceptisol and calcic inceptisol (IPf VI): Composite Bk horizons and the *Camborygma* ichnocoenosis (Tables 3–5; Fig. 8A–C) in red and pale red, massive siltstone, and very fine sandstone (F-2b) in floodplain deposits (FA-4). Calcic horizons reach mature stage 1 to incipient stage 2 development with sparse calcium carbonate nodules. Green-grey rhizohaloes are 20–95-cm deep, up to 110-cm long, and penetrate underlying horizons. *Naktodemasis* is 2–5 mm in diameter, is found extensively in the entire profile, and overprints rhizohaloes.

Camborygma inceptisol and calcic inceptisol (IPf VII): Composite Bk horizons and the *Camborygma* ichnocoenosis (Tables 3–5; Fig. 8A–C) in red and pale red, massive siltstone, and very fine sandstone (F-2b) in floodplain deposits (FA-4). Calcium carbonate nodules have mature stage 2 development. *Camborygma* is 110–120-cm deep and 150-cm long. Green-grey rhizoliths and rhizohaloes are 60-cm deep and 70-cm long.

Therapsid inceptisol and calcic inceptisol (IPf VIII): Composite ABk horizons and the therapsid ichnocoenosis (Tables 3–5; Fig. 8D–F) in red, red-brown, and grey, massive siltstone (F-2a) within floodplain deposits (FA-4). Siltstone is cemented by calcium carbonate and reaches stage 1 development. Therapsid burrows are 175-cm deep, 215-cm long, and overprint multiple ABk horizons. White and yellow rhizoliths are up to 50-cm deep and 80-cm long.
Fig. 4. Distribution of lithofacies, facies associations, ichnofossils, pedogenic features, palaeosols and ichnopedofacies in the Chinle Fm with estimated mean annual precipitation (MAP). Overall, precipitation decreases through time with shorter term wet-dry cyclicity observed in the PFM, lower ORM, and middle ORM.
Fig. 5. Diagnostic features of ichnopedofacies I and II. **A.** Stacked AC and C horizons in shallowly burrowed entisol (IPF I). **B.** Steinichnus (St) covering bottom of bedding planes in IPF I. **C.** Measured section in IPF I. **D.** AC horizons in outcrop with rhizohaloes (Rh) in rhizolith Entisol (IPF II). Staff in 10-cm intervals. **E.** Rhizohaloes (Rh) in the basal AC horizon. Grain size card 15 cm tall. **F.** Measured section in IPF II.
Fig. 6. Diagnostic features of ichnopedofacies III and IV. A. 1.1-m-deep Camborygma (Ca) penetrating stacked AC horizons in Camborygma entisol (IPF III). Staff in 10-cm intervals. B. Close-up of Camborygma (Ca) in IPF III. Note ripple-lamination preserved around burrow in IPF III. C. Measured section in IPF III. D. Camborygma (Ca) penetrating stacked AC horizons of ripple cross-laminated very fine-grained sandstone in Naktodemasis-Camborygma entisol (IPF IV). E. Naktodemasis (Nk) and rhizoliths (Rh) along bedding planes in IPF IV. F. Camborygma (Ca) burrow in IPF IV. G. Measured section in IPF IV.
Camborygma vertisol (IPF IX): Compound to cumulative A-Bss horizons with redoximorphic mottling, slickensides, prismatic pedds, and the *Camborygma* ichnocoenosis (Tables 3–5; Fig. 9A–E) in pale red and green-grey, massive siltstone (F-2a) within floodplain deposits (FA-4). *Camborygma* is 75-cm deep, 95-cm long, and extend into the Bss horizon. Rhizohaloes are bright yellow, 60-cm deep, and 70-cm long. *Fictovichnus* is observed 25 cm below the top of the Bss horizon.

Naktodemasis alvisol (IPF X): Composite Bt horizons and the *Naktodemasis* ichnocoenosis (Tables 3–5; Fig. 9F–I) in red and red-brown mudstone to siltstone (F-1, F-2a) in floodplain deposits (FA-4). Ichnofoossils are only discernible in the A horizon. *Naktodemasis* are 2–5 mm in diameter and green-grey rhizohaloes are 10-cm deep and 12-cm long.

Naktodemasis calcic alvisol (IPF XI): Composite Btk horizons and the *Naktodemasis* ichnocoenosis (Tables 3–5; Fig. 10A, B) in red, red-brown, and red-grey, massive siltstone (F-2a) within floodplain deposits (FA-4). Calcium carbonate horizons reach mature stage 2 development. *Naktodemasis* is 2–5 mm in diameter and penetrates down into the Bt horizon. Green-grey rhizohaloes are 19-cm deep and 22-cm long. *Planolites* is <2 mm in diameter and only observed within the A horizon.

Rhizolith calcic alvisol (IPF XII): Composite Btk horizons and the rhizolith ichnocoenosis (Tables 3–5; Fig. 10C–F) in red and red-brown, massive siltstone (F-2a) within floodplain deposits (FA-4). Calcium carbonate accumulation reaches stage 3 development with abundant nodules up to 2 cm in diameter. Rhizotubules lined with calcium carbonate nodules are 120-cm deep and 135-cm long. Green-grey siltstone fills the inside of rhizotubules.

INTERPRETATION OF ICHNOPOEDOFACIES

Shallowly burrowed entisol (IPF I): *Cylindricum* in conjunction with F-2c and F-3 suggest subaerially exposed levee, crevasse-splay, and point bar environments with shallow water tables (Figs 5A–C, 11) (Hasiotis and Dubiel, 1993a; Hasiotis and Demko, 1996; Hasiotis, 2004, 2008). This is further supported by the association with desiccation cracks, indicating wetting and drying cycles. *Scovenia* indicates shallow water tables with sediment saturation near 100% and where the capillary fringe is close to the surface in either marginal-lacustrine or levee environments (Frey *et al.*, 1984; Hasiotis and Dubiel, 1993a; Hasiotis, 2002, 2004, 2008). The occurrence of *Scovenia* in F-3 suggests deposition on levees or fluvial floodplain. The occurrence of both *Cylindricum* and *Scovenia* within the same beds (Table 3) indicate fluctuating water-table conditions in these proximal fluvial environments. *Scovenia* form after initial deposition when water tables and sediment moisture levels are high, then *Cylindricum* is constructed in the deposits as the water table lowers (Hasiotis and Bown, 1992; Hasiotis, 2004, 2008). *Skolithos* are not indicative of any specific environment (Hasiotis, 2002), but the sandstone lenses containing these ichnofoossils match the morphology of crevasse-splay deposits (Miall, 1996). *Steinichmus* are associated with palustrine and channel–lowee environments with high water tables at or near the sediment–water-air interface (Bromley and Asgaard, 1979; Hasiotis and Bown, 1992; Hasiotis, 2002). Occurrence of *Steinichmus* in green-grey mudstone also supports poorly drained, reducing conditions (Therriex and Fastovsky, 2000; Kraus and Hasiotis, 2006, 2008b). Desiccation cracks and shallow rhizoloths within these mudstones indicate periods of slightly lower water tables and subaerial exposure (Hasiotis *et al.*, 2007a).

Deep penetration of roots in fluvial bars suggests that they became subaerially exposed via falling water levels to produce well-drained conditions (Hasiotis *et al.*, 2007a; Counts and Hasiotis, 2014). Fluvial bars were also abandoned during channel migration and became part of the proximal floodplain colonized by plants (Kraus, 1987; Hasiotis, 2004, 2008). Drab colours of rhizohaloes formed through surface water gleying during short periods of standing water during and after flooding events (Retallack, 2001; Hasiotis, 2004, 2008; Kraus and Hasiotis, 2006). Rhizohalo penetration depth decreases upsection from 70 to 15 cm below the sediment surface, indicating a rise in water table through time (Hasiotis, 2004, 2008; Hasiotis *et al.*, 2007a). Weak palaeosol development occurred within close proximity to the fluvial system, indicating frequent flooding and burial by sediment (Bown and Kraus, 1987, 1993a, b; Hasiotis, 2007).

Camborygma entisol (IPF II): *Camborygma* extend into the phreatic zone, and mark the level of the palaeowater table (Figs 6A–C, 11) (Hasiotis and Mitchell, 1993; Hasiotis *et al.*, 1993; Hasiotis, 2002). *Camborygma* within F-4a and F-5b are assigned to *Camborygma litonomos* due to their simple shaft morphology and length <0.5 m (Hasiotis and Mitchell, 1993; Hasiotis and Honey, 2000). *Camborygma litonomos* represent saturated sediments with a high-water table in proximal levee, crevasse-splay, and point bar environments (Hasiotis and Mitchell, 1993; Hasiotis *et al.*, 1993; Hasiotis, 2004, 2008). This interpretation is supported by sandstone and conglomerate bodies with morphologies matching proximal fluvial crevasse-splay deposits (Miall, 1996). *Camborygma* within F-3 are assigned to *Camborygma eumekeanos* due to shaft depths >1 m and simple mor-
Fig. 7. Diagnostic features of ichnopedofacies V and VI. A. Green-grey rhizohalo (Rh) in A horizon in rhizolith inceptisol (IPF V). Rock hammer 33 cm long. B. Palaeosol profile in outcrop of IPF V. C. Measured section in IPF V. D, E. Profile of palaeosol in outcrop of Naktodemasis calcic inceptisol (IPF VI). Palaeosols form composite profiles of cumulative horizons in IPF VI. F. Naktodemasis (Nk) development around a rhizohalo (Rh) in IPF VI. G. Measured section in IPF VI.
Fig. 8. Diagnostic features of ichnopedofacies VII and VIII. A. Palaeosol profile in outcrop of *Camborygma* calcic Inceptisol (IPF VII). Staff in 10-cm intervals. B. *Camborygma* (Ca) in branching and nonbranching forms. C. Measured section in IPF VII. D. Palaeosol profile in outcrop of therapsid calcic inceptisol (IPF VIII). Staff in 10-cm intervals. E. Therapsid burrow (Tb) and rhizoliths (Rh) in IPF VIII. F. Measured section in IPF VIII.
Fig. 9. Diagnostic features of ichnopedofacies IX and X. A. Palaeosol profile in outcrop of Camborygma vertisol (IPF IX). B. Yellow rhizohaloes (Rh) penetrating an A horizon with prismatic peds in IPF IX. C. Fictovichnus (Fv) in Bss horizon in IPF IX. D. Camborygma from A horizon in IPF IX. E. Measured section in IPF IX. F. Naktodemasis (Nk) and rhizohaloes in the A horizon in Naktodemasis alfisol (IPF X). Grain size card 15 cm tall. G, H. Palaeosol profile in outcrop in IPF X. I. Measured section in IPF X.
Fig. 10. Diagnostic features of ichnopedofacies XI and XII. A. Palaeosol profile in outcrop of *Naktodemasis* calcic alfisol (IPF XI). Staff in 10-cm intervals. B. Measured section in IPF XI. C. Btk horizon with numerous calcium carbonate nodules in rhizolith calcic alfisol (IPF XII). Top of horizon truncated by overlying conglomerate. Staff in 10-cm intervals. D. ABtk horizon with rhizotubules (Rt) lined by calcium carbonate nodules in IPF XII. E. Lower half of palaeosol profile in outcrop of IPF XII. Note sharp contrast between CaCO₃-bearing Btk horizon and underlying A horizon. F. Measured section in IPF XII.
Fig. 11. Ichnopedofacies depositional model for Chinle Fm. Lateral distribution of ichnopedofacies on alluvial plain. Cross-section from A to A’ on landscape block diagram shows variations in physiochemical conditions along the alluvial plain. Shallower burrows located closer to fluvial channel, whereas deeper burrows and CaCO$_3$ nodules occur on distal floodplain.

Camborygma calcei incertae sedis, Therapsid calcei incertae sedis, and Naktodemasis affinis indicate shallower, highly fluctuating water tables in proximal floodplain environments (Hasiotis and Mitchell, 1993; Hasiotis et al., 1993). Camborygma eumekenomos indicate deeper, highly fluctuating water tables in proximal floodplain environments (Hasiotis and Mitchell, 1993; Hasiotis and Honey, 2000; Hasiotis, 2004, 2008). Stacked compound AC horizons first formed on levees during an interval of nonsteady, high sedimentation (Fig. 6A–C; Kraus, 1999; Hasiotis and Platt, 2012). Skolithos formed during short intervals of pedogenesis between depositional episodes, suggesting other bioturbation may have occurred within AC horizons but is not clearly visible. Close proximity to the fluvial system led to frequent burial by sediment, restricting pedogenic development and preserving primary sedimentary structures (Bown and Kraus, 1987; Hasiotis et al., 2012). Camborygma originated from a stable soil surface during a hiatus in sedimentation, allowing burrows to overprint the underlying AC horizons (Hasiotis and Honey, 2000). Occurrence of C. eumekenomos also marks the migration of the fluvial system away from the area, which led to less frequent sedimentation events and greater pedogenesis (e.g., Bown and Kraus, 1993a, b; Hasiotis, 2004, 2008).

Naktodemasis-Camborygma entisol (IPf IV): This ichnopedofacies contains ichnofossils representing both high and low water tables. The occurrence of Scoyenia, Arenicolites, Ancorichnus, and Treptichnus along bedding planes suggests a shallow water table and intervals of standing freshwater (Figs 6D–G, 11) (Hasiotis, 2002, 2004, 2008). Camborygma litonomos also indicate a shallow water table between 20–45 cm beneath the sediment surface. Naktodemasis, however, reflect terraphilic to hygrophilic behaviour and indicates moderate- to well-drained soil conditions (e.g., Hasiotis, 2004, 2008; Smith et al., 2008a, b; Counts and Hasiotis, 2009, 2014). Green-grey rhizohaloes penetrating up to 20 cm deep further support a thin, well-drained vadose zone (Kraus and Hasiotis, 2006; Hasiotis et al., 2007a; Counts and Hasiotis, 2014).

Overprinting of ichnofossils exhibiting terraphilic, hygrophilic, and hydrophilic behaviours are common features in fluvial deposits and indicate fluctuating water tables (Hasiotis and Bown, 1992; Hasiotis, 2002). After initial sediment deposition, when standing water was present, the levee was colonized with Arenicolites, Ancorichnus, and Treptichnus. As water level fell beneath the sediment surface, Scoyenia and shallow roots penetrated the levee. Continued pedogenesis and improved drainage allowed the tracemakers of C. litonomos and Naktodemasis to bioturbate the sediment and overprint previous burrows. Towards the end of pedogenesis, deeper penetrating roots, in turn fed on by the organisms producing Naktodemasis, overprinted C. litonomos. Pedogenesis was brief due to close proximity...
to the fluvial system that frequently deposited new sediment onto the levee, which subsequently underwent pedogenesis after the water level lowered. This pattern was repeated over time (Bown and Kraus, 1987, 1993a, b; Hasiotis and Bown, 1992; Hasiotis, 2007).

Rhizolith inceptisol (IPF V): Vertically penetrating, green-grey rhizohaloes and red-brown rhizoliths and strong red colour of palaeosols indicate well-drained conditions (Figs 7A–C, 11) (Kraus and Hasiotis, 2006). Root ichnofossils, however, only show a maximum penetration depth of 25 cm, indicating the vadose zone was thin and the water table was shallow (Hasiotis et al., 2007a). The compound profiles indicate higher, nonsteady sedimentation with pedogenesis occurring between depositional events (Kraus, 1999; Hasiotis and Platt, 2012). The AC horizon with remnant bedding indicates shorter duration pedogenesis than the overlying homogenized A horizon (Bown and Kraus, 1987; Hasiotis et al., 2012). Incipient horizon formation, nonsteady sedimentation, short duration of pedogenesis, and shallow water tables indicate a proximal position on the floodplain (Bown and Kraus, 1987, 1993a, b; Birkeland, 1999; Hasiotis and Platt, 2012).

Naktodemasis inceptisol and calcic inceptisol (IPF VI): Extensive Naktodemasis development, deeply penetrating rhizohaloes, and strong red palaeosol colouration suggest well-drained environments with a deep water table (Figs 7D–G, 11) (Kraus and Aslan, 1993; Kraus and Hasiotis, 2006; Hasiotis et al., 2007a; Smith et al., 2008a; Counts and Hasiotis, 2009, 2014). Calcium carbonate nodules indicate that evapotranspiration > precipitation (Gile et al., 1966; Machette, 1985), and also support the interpretation of well-drained conditions. The length of pedogenesis allowed roots to crosscut underlying horizons and *Naktodemasis* to form around these roots as feeding behaviour (Fig. 7F). Cumulative and composite profiles formed when pedogenesis outpaced steady state and nonsteady state sediment deposition, respectively, leading to more developed palaeosols (Kraus, 1999; Hasiotis and Platt, 2012), and suggesting a more distal position on the floodplain (Bown and Kraus, 1987, 1993a, b; Hasiotis, 2007; Hasiotis et al., 2012).

Camborygma inceptisol and calcic inceptisol (IPF VII): *Camborygma eumekenomos* terminates at a pale red Bk horizon, indicating a deep, highly fluctuating water table at times >1 m below the sediment surface. Pale red colouration is associated with less well-drained palaeosol horizons (Figs 8A–C, 11) (Kraus and Aslan, 1993; Kraus and Hasiotis, 2006; Smith et al., 2008b, c), supporting more frequent saturated conditions at this level. Stronger red colouration in overlying horizons, roots, faecal pellets, and calcium carbonate nodules indicate well-drained, oxidizing conditions higher in the palaeosol profile (Kraus and Aslan, 1993; Kraus and Hasiotis, 2006; Hasiotis and Platt, 2012). Calcium carbonate nodules overprinted *C. eumekenomos* and the pale red Bk horizon during extended intervals of lower precipitation and palaeowater table, suggesting evapotranspiration outpaced precipitation and moisture was highly seasonal (Machette, 1985; Dubiel and Hasiotis, 2011). Composite horizons indicate pedogenesis outpaced nonsteady state sediment deposition on the distal floodplain, leading to better developed palaeosols (Kraus, 1999; Hasiotis and Platt, 2012).

Therapsid inceptisol and calcic inceptisol (IPF VIII): Therapsid burrows exhibit terraphilic behaviour and were constructed above the water table (Figs 8D–F, 11) (Hasiotis, 2004, 2008; Hasiotis et al., 2004, 2007b; Hembree and Hasiotis, 2008). Two episodes of colonization by therapsids are observed. The lower therapsid burrows occur in horizons with duller colour values and iron oxide nodules, which indicate higher moisture, higher sediment saturation, and more poorly drained conditions (Kraus and Aslan, 1993; Mack et al., 1993; Stiles et al., 2001). Therapsid burrows were emplaced during an interval of sediment hiatus and stable landscape with well-drained conditions of relatively short duration. The upper two ABk horizons denote two intervals of sedimentation and subsequent bioturbation by roots and invertebrates. Deep rhizoliths and stronger red colouration indicate well-drained palaeosols with longer pedogenesis, allowing therapsid burrows to overprint horizons and carbonate to the build up in the profile. Composite calcic horizons indicate pedogenesis outpaced sediment deposition in a distal position on the floodplain (Bown and Kraus, 1993a, b; Kraus, 1999; Hasiotis et al., 2007a; Hasiotis and Platt, 2012).

Camborygma vertisol (IPF IX): Redoximorphic colouration, prismatic, and slickensides indicate fluctuating water tables and seasonal moisture (Figs 9A–E, 11) (Driese and Foreman, 1992; Driese and Mora, 1993; Kraus and Hasiotis, 2006; Dubiel and Hasiotis, 2011). *Fictovichmus* are cocoons that represent terraphilic behaviour in well-drained sediments constructed during the dry season when soil moisture and the water table were lower (Hasiotis, 2002, 2003, 2004, 2008). Subsequent water table rise during the wet season aided in preservation of the cocoons (Alonso-Zara et al., 2014). Following an interval of deposition, plants colonized the soil profile and yellow rhizohaloes formed in saturated, poorly drained sediments with reducing conditions (Kraus and Hasiotis, 2006). Another interval of deposition followed, and a subsequent hiatus in sedimentation allowed for *C. eumekenomos* to overprint underlying horizons to a water table depth ~75 cm below the sediment surface. The redoximorphic colouration, compound and cumulative profiles, and *C. eumekenomos* indicate a proximal position on the floodplain (Kraus, 1987; Hasiotis and Mitchell, 1993; Kraus, 1999; Hasiotis and Platt, 2012).

Naktodemasis alfisol (IPF X): Naktodemasis as feeding behaviour around roots and red matrix indicates well-drained conditions with a low water table (Figs 9F–I, 11) (Kraus and Aslan, 1993; Kraus and Hasiotis, 2006; Smith and Hasiotis, 2008; Smith et al., 2008a; Counts and Hasiotis, 2009, 2014). Composite Bt horizons formed as pedogenesis outpaced sedimentation, allowing clay to accumulate in the subsurface, indicating a more stable landscape in a distal position on the floodplain (Bown and Kraus, 1987; Kraus, 1999; Hasiotis et al., 2007a; Hasiotis and Platt, 2012).

Naktodemasis calcic alfisol (IPF XI): Naktodemasis development down 75 cm, calcium carbonate nodules, and red colouration indicate well-drained conditions with a deep water table produced when evapotranspira-
tation outpaced precipitation and moisture was seasonal (Figs 10A, B, 11) (Machette, 1985; Counts and Hasiotis, 2014). Composite Btk profiles indicate that pedogenesis outpaced sedimentation, allowing clay accumulation and carbonate buildup in a landscape on the distal floodplain (Bown and Kraus, 1993a, b; Kraus, 1999; Hasiotis, 2007; Hasiotis and Platt, 2012).

Rhizolith calcic alfisol (IPF XII): Red matrix, deeply penetrating rhizotubules, and carbonate nodules indicate well-drained conditions with a deep water table when evapotranspiration outpaced precipitation and moisture was seasonal. Rhizotubules formed as carbonate precipitated on root surfaces during the uptake of nutrients and water (Figs 10C–F, 11) (Klappa, 1980; Kraus and Hasiotis, 2006), which produced a cylinder that conducted water in the soil profile (Klappa, 1980), producing a gleyed matrix (reducing conditions) within the rhizotubule. The Btk horizon above the rooted zone indicates another calcic alfisol formed on top of this profile, but was cut out by the underlying conglomerate. Abundant accumulation of carbonate and well-formed, composite Btk horizons indicate greater duration of palaeosol development with pedogenesis outpacing sedimentation on the most distal position of the floodplain.

DISTRIBUTION OF PALAEOSOLS AND ICHNOPEDOFACIES

Lateral distribution

Ichnofacies show an inverse relationship between palaeosol development and proximity to the fluvial system in a general model (Fig. 11). Entisol ichnofacies (IPF–I–IV) are restricted to proximal fluvial bar, crevasse-splay, and levee environments. Inceptisol, calcic inceptisol, vertisol, alfisol, and calcic alfisol ichnofacies (IP–V–XII) are only present in floodplain environments. This distribution shows a similar pattern to palaeosols of the Palaeogene Willwood Fm in Wyoming, where Bown and Kraus (1987, 1993a, b) and Kraus (1987) attributed their observations of palaeosol development to decreasing short-term sediment accumulation rates with increasing distance from the channel. Thinning of fluvial deposits away from the channel means distal environments experience less sedimentation and greater duration of pedogenesis (Bown and Kraus, 1987, 1993a, b; Hasiotis, 2002, 2007). Rhizolith inceptisols show greater development than other ichnofacies in channel bank, crevasse-splay, and levee environments, but pedogenesis did not act long enough for the development of calcic or argillic horizons, indicating formation on the proximal floodplain. The strong hydromorphic features of Camborygma vertisols indicate areas of low topography on the floodplain, leading to higher gleyed matrixes and less well-drained conditions (Kraus and Middleton, 1987a; Kraus and Aslan, 1993; Prochnow et al., 2005). Lack of carbonate accumulation further supports higher moisture content in this ichnofacies. Naktodemasis inceptisols and calcic inceptisols, Camborygma inceptisols and calcic inceptisols, and therapsid inceptisols and calcic inceptisols display more developed horizonation, supporting formation on the distal floodplain. Naktodemasis alfisols, Naktodemasis calcic alfisols, and rhizolith calcic alfisols show both thick, well-developed calcic and argillic horizons, also indicating a distal floodplain position.

Vertical distribution

Overall, ichnofossil diversity increases from the MM into the lower and middle ORM, then decreases throughout the rest of the ORM and CRM. Calcium carbonate nodules are most abundant in the PFM, lower ORM, and base of the middle ORM and decrease in occurrence up section (Figs 4, 12). Ichnofacies transition to redder up section and become dominated by ichnofossils displaying terraphilic behaviour. Camborygma decrease in occurrence through ORM deposition and are absent from the CRM. Therapsid burrows, conspicuous in the PFM, decrease up section through the ORM and are absent from the CRM. Root ichnofossils and Naktodemasis occur throughout the PFM and ORM, though Naktodemasis are only present near the base of the CRM, whereas root ichnofossils persist higher into this unit. Rhizoliths and Cylindricum are the stratigraphically highest occurring ichnofossils in the Chinle Fm.

Proximal fluvial (i.e., channel, levee, crevasse splay) deposits show a stratigraphic shift in ichnofacies throughout the Chinle Fm (Fig. 4). Rhizolith entisols in the MM transition to Camborygma entisols in the PFM. Camborygma entisols transition to both shallowly burrowed entisols, dominated by the Steinichnus and Scoyenia ichnocoenoses, and Camborygma-Naktodemasis entisols in the ORM. Ichnofacies transition to shallowly burrowed entisols, dominated by the Scoyenia and Cylindricum ichnocoenoses, and rhizolith entisols in the CRM.

Proximal and distal floodplain deposits also display stratigraphic changes in ichnofacies (Figs 4, 12). Floodplain ichnofacies are rare in the MM, but the PFM contains Naktodemasis inceptisols and calcic inceptisols, and therapsid inceptisols and calcic inceptisols. These ichnofacies transition to Camborygma vertisols, rhizolith inceptisols, Naktodemasis calcic alfisols, and rhizolith calcic alfisols in the lower ORM. In the middle to upper ORM, ichnofacies consist of Camborygma inceptisols and calcic inceptisols, Naktodemasis alfisols, and Naktodemasis inceptisols and calcic inceptisols. Ichnofacies transition to Naktodemasis inceptisols and calcic inceptisols and rhizolith inceptisols in the CRM.

INCISED VALLEYS AND CHANNEL FILLS

Pedogenic development was further influenced by topographic position and location within the study area. Stacked palaeovalleys are present in all members, and palaeosols fill these palaeovalleys (Fig. 12). Palaeovalley depth varies from 5–17 m, indicating significant variation in palaeotopography during Chinle Fm deposition. In the PFM, lower ORM, and upper ORM, less developed palaeosols dominate palaeovalleys and better developed palaeosols occur on interfluve positions. A position on the interfluve itself, however, is not indicative of a particular stage of palaeosol development. Inceptisols and vertisols were more common
Fig. 12. Correlation panel of the measured stratigraphic sections. Red boxes highlight Chinle Fm palaeovalleys. Palaeovalleys cut into all members during base-level fall and filled during base-level rise.
at interfluve locations in the south of the study area. Calcic inceptisols, alfisols, and calcic alfisols were more common on interfluves located towards the north of the study area. This indicates a local trend from PFM into ORM deposition, where lower valley-fill rates with longer duration of pedogenesis were present in the north, with rate of valley fill increasing to the south. No trend is associated with palaeosol development and topographic position for palaeovalleys in the MM, middle ORM, and CRM.

PHYSIOCHEMICAL CONTROLS ON SEDIMENTATION AND ICHNOPEDOLOGIC DEVELOPMENT IN THE NORTH-EASTERN CHINLE BASIN

Physiochemical conditions controlling sedimentation and ichnopedofacies development in the north-east Chinle Basin can be separated into autocyclic controls, allocyclic controls, and hydrology. Autocyclic processes are determined by energy distribution within the depositional basin and include fluvial channel migration and overbank flooding events (Beerbower, 1964; Allen, 1970; Bridge and Leeder, 1979; Bridge, 1984; Smith et al., 1989; Slingerland and Smith, 2004; Cleveland et al., 2007; Trendell et al., 2012). Allocyclic controls are influences from outside of the depositional basin and include tectonism (including halokinesis) and climate (Beerbower, 1964; Caster, 1970; Bridge and Leeder, 1979; Blakey and Gubitosa, 1983; Alexander and Leeder, 1987; Hazel, 1994; Cecil, 2003; Cleveland et al., 2007; Dubiel and Hasiotis, 2011). Hydrology is influenced by autocyclic and allocyclic processes and controls the distribution, tiering, and depth of ichnofossils (Hasiotis and Bown, 1992; Hasiotis and Mitchell, 1993; Hasiotis and Dubiel, 1994; Hasiotis, 2002, 2004, 2007, 2008; Hasiotis et al., 2007a, 2012).

Autocyclic processes

Within the Chinle Fm, meandering river, braided river, crevasse-splay, and levee deposits commonly overlie floodplain deposits (Fig. 4). This depositional pattern records overbank flooding and channel migration on the alluvial plain, with pedogenesis occurring between depositional events (Bridge and Leeder, 1979; Bridge, 1984; Kraus, 1987, 1999, 2002; Smith et al., 1989; Slingerland and Smith, 2004).

Overbank flooding: This depositional process is preserved in the PFM, middle ORM, and CRM where the thin, discontinuous nature of sandstone facies indicates deposition on the distal ends of prograding crevasse-splay and levee complexes (Bridge, 1984; Bown and Kraus, 1987). Frequency of overbank flooding influenced up section changes in palaeosol development. Alfisols occur between depositional episodes in the PFM and middle ORM (Fig. 12). Alfisols decrease up section and no alfisols are found within the CRM (Figs 4, 12). Alfisols in the PFM and middle ORM indicate these units had longer durations of pedogenesis between depositional events. The frequency and magnitude of sedimentation by overbank flooding increased in the CRM (Bown and Kraus, 1993a, b; Hasiotis, 2007; Hasiotis et al., 2007a), which reduced the duration of pedogenesis and resulted in a transition from the formation of calcic inceptisols to the formation of inceptisols and entisols.

Channel migration: This depositional process is preserved in the MM, PFM, ORM, and CRM where channel migration of braided and meandering rivers influenced sediment deposition and duration of pedogenesis (Figs 4, 12). Channel migration towards distal positions on the floodplain led to more frequent sedimentation events and laid levee and crevasse-splay deposits over floodplain deposits, interrupting pedogenesis. Subsequent fluvial migration away from the area resulted in less frequent sedimentation and greater duration of pedogenesis, allowing crevasse-splay and levee deposits to be topped by more developed ichnopedofacies (Kraus, 1987; Bown and Kraus, 1993a, b; Hasiotis et al., 2007a).

Frequency of channel migration changed through Chine Fm deposition, affecting the development of palaeosols and ichnopedofacies. In the MM, frequent migration of braided rivers led to the abandonment of fluvial bars and the development of rhizolith entisols on bar tops. Channel migration frequency then decreased during deposition of the PFM and lower ORM. Decreased reworking by meandering fluvial systems with low, nonsteady sedimentation allowed for greater duration of pedogenesis. Numerous channel migration deposits in the middle ORM indicate an increase in migration frequency up section. Frequency of channel migration then decreased during upper ORM deposition, with only one channel migration event observed near the top of the unit. Less frequent channel migration, and a shift to relatively steady sediment deposition allowed for the accumulation of composite and cumulative palaeosol profiles. Channel migration frequency then increased once again during CRM deposition. Increased channel migration and increasing nonsteady sediment deposition led to shorter duration of pedogenesis and a transition from composite inceptisols to compound inceptisols and entisols.

Comparison to FACs: In the north-east Chinle Basin, overbank flooding and channel migration deposits fine upward similarly to the meter-scale fluvial aggradational cycles (FACs) observed in the Chinle Fm in Arizona, New Mexico, and eastern Utah (Prochnow et al., 2006b; Cleveland et al., 2007; Trendell et al., 2012). In the study area, however, such nested fluvial cycles were not identified; though channel migration and overbank flooding did affect finer scale sedimentation patterns. The absence of nested fluvial cyclicity indicates that autocyclic processes were neither as common nor the dominant control on sedimentation.

Allocyclic processes

Regional tectonism: Changes in rates of basin subsidence and accommodation are indicated by shifting styles of fluvial deposition and ichnopedofacies development (Figs 4, 12). Low subsidence rates led to decreased accommodation, causing increased reworking of sediment by fluvial systems (e.g., Kraus and Middleton, 1987b). Frequent reworking of sediment resulted in poor preservation of ichnopedofacies in the MM, and those that were preserved were less developed due to short duration of pedogenesis. Fluvial styles
evolved into meandering streams in the PFM and ORM. The thick floodplain deposits and ribbon sand bodies of these units support rapid subsidence rates that allowed for greater accommodation in the basin (Blakey and Gubitosa, 1984; Kraus, 1987; Kraus and Middleton, 1987b; Hazel, 1994; Cleveland et al., 2007). Greater accommodation meant less frequent sediment reworking by rivers and longer duration of pedogenesis (Bown and Kraus, 1987; Blakey and Gubitosa, 1984; Kraus, 2002). This aided in the formation and preservation of more developed ichnopedofacies in the PFM and lower ORM. During intervals of higher sedimentation, floodplain and fluvial systems aggraded (e.g., Smith et al., 1989; Slingerland and Smith, 2004). Intervals of higher nonsteady and steady sedimentation explain the formation of compound and composite ichnopedofacies in the middle ORM and composite and cumulative ichnopedofacies in the upper ORM. Sand sheets in the CRM indicate a shift to lower basin subsidence rates at the end of Chinle Fm deposition (Blakey and Gubitosa, 1983, 1984; Kraus, 1987; Hazel, 1994; Cleveland et al., 2007). Ribbon sand bodies in the CRM, however, indicate basin subsidence rate was not as low as during MM deposition. Slightly higher subsidence rates allowed for the accommodation needed for the preservation of playa lake deposits in the CRM. As basin subsidence decreased, accommodation also decreased and sediment reworking by fluvial systems increased. Shorter duration pedogenesis led to less developed ichnopedofacies up section, though frequent cannibalization of sediment by rivers meant some ichnopedofacies were not preserved in CRM deposits.

Incised valleys formed through base-level changes, and ichnopedofacies filling these valleys were influenced by temporal and spatial changes in sedimentation rate. Drops in base level cut valleys into Chinle Fm units and mark the breaks between members. Valleys were subsequently filled during rises in base level, which created accommodation for sedimentation. During MM deposition, high, nonsteady sedimentation rates and increased fluvial migration during reduced accommodation influenced the formation of entisols. During PFM, lower ORM, and upper ORM deposition, relative rates of valley fill were higher in the south of the study area than in the north, creating a trend of increasing duration of pedogenesis on interfluvies located to the north. Overall sedimentation rates remained fairly low during PRM and lower ORM deposition. Low, nonsteady sedimentation, along with rare channel migration, further enhanced the formation of well-developed ichnopedofacies including compound and composite inceptisols and alfisols. Sedimentation rates then increased and remained predominantly nonsteady during middle ORM deposition. Sedimentation remained high, but decreased slightly and become relatively steady in the upper ORM. Sedimentation rates increased in the CRM and also shifted to nonsteady deposition. This change in sedimentation, in conjunction with decreased basin accommodation and more frequent channel migration, resulted in a shift from inceptisols at the base of the member to poorly developed, compound entisols and inceptisols.

Halokinesis: This process influenced facies distribution and preservation in the study area. The north-east Chinle Basin is located at the western edge of the Salt Anticline Region, and previous investigations have noted that halokinesis influenced sedimentary architecture and palaeosol development (Blakey and Gubitosa, 1983; Hazel, 1994; Prochnow et al., 2005, 2006b). Across the Four Corners region, including south-eastern Utah, extensive lacustrine limestone beds have been identified within the ORM (Stewart et al., 1972; Blakey and Gubitosa, 1983; Dubiel, 1987). The ORM in the study area, however, does not contain those extensive lacustrine limestone beds. A laterally accreted conglomerate bed containing oncoid clasts occurs instead in that stratigraphically equivalent position (Figs 4, 12). Increased basin subsidence due to salt withdrawal during lower ORM deposition created the accommodation needed for lakes to form. Oncolites then developed within this local lacustrine system (e.g., Abell et al., 1982; Rosell and Obrador, 1982; Parcerisa et al., 2006; Arenas et al., 2007). Following lake development, a drop in local base level caused by salt diapirism led to fluvial incision and reworking of the lacustrine deposits (Blakey and Gubitosa, 1983, 1984; Hazel, 1994). Oncolites composing the gravel in the lateral accretion beds are the only evidence of the lacustrine system.

Climate: Climatic trends are interpreted from vertical changes of ichnopedofacies, particularly those with pedogenic carbonate. Modern locations in India and Tanzania were selected as the most appropriate analogues to Chinle Fm palaeosols due to their monsoonal conditions with similar environments and latitudinal positions to deposits in the Chinle Fm.

Stage 1 carbonate buildup in PFM ichnopedofacies was primarily influenced by precipitation levels. Modern soils in central India (~20–30°N) under monsoonal conditions with stage 1 carbonate form under precipitation regimes of 1100–1300 mm/year (Shrivastava et al., 2002). Modern calcic soils on the Serengeti Plain (~1–5°S) under monsoonal conditions show a similar relationship between carbonate buildup and precipitation. Carbonate nodules become rarer as precipitation approaches 1100 mm/year (Jager, 1982). Modern precipitation values suggest that during PFM deposition, therapsid inceptisols and calcic inceptisols formed under an annual precipitation of ~1100–1300 mm/year.

Precipitation played a large role in influencing *Cambronyga Vertisol* ichnopedofacies development. In contemporary central India (~20–30°N), vertisols are found under precipitation regimes of 500–1300 mm/yr (Shrivastava et al., 2002). These vertisols also display various levels of carbonate buildup, with heavy carbonate dissolution occurring in vertisols where annual precipitation is 1000–1300 mm (Shrivastava et al., 2002). The lack of carbonate in the *Cambronyga Vertisol* suggests (1) precipitation levels were >1300 mm/yr, precluding carbonate formation, and (2) a shift to more humid conditions across the PFM–ORM transition.

Differences in carbonate development between the two types of lower ORM calcic alfisol ichnopedofacies was not due to differences in duration of pedogenesis, but variations in precipitation levels. Modern soils with stage 2 carbonate under monsoonal conditions form on the Serengeti Plain (~1–5°S) under precipitation regimes from 700–1100 mm/yr (Jager, 1982). This suggests *Naktodemasis* calcic alfisols formed under an annual precipitation of ~700–1100 mm. Modern soils with stage 3 car-
Bonate similar in size to those in the rhizolith calcic alfisols are found in southern India (~10–12°N) under precipitation regimes of 400–500 mm/yr (Shankar and Achyuthan, 2007). Carbonate nodules are also present throughout the whole profile of modern calcic soils forming under monsoonal conditions in central India (~20–30°N) under precipitation regimes of 500–700 mm/yr (Shrivastava et al., 2002). This suggests the rhizolith calcic alfisols formed under an annual precipitation of ~400–700 mm. Thick Btk horizons in the lower ORM also suggest smaller scale cycles of decreasing precipitation, allowing the top of the calcic horizon to move upward over time (Birkeland, 1999). Higher precipitation allows water to flow deeper into the soil profile, washing out and dissolving the carbonate nodules (Gile et al., 1966; Shrivastava et al., 2002). Preservation of thick calcic horizons indicates precipitation decreased and rainfall reached shallower and shallower levels, recording small-scale drying cycles during monsoonal conditions. The change from Camborygma vertisolis to Naktodemasis calcic alfisols to rhizolith calcic alfisols marks a clear shift to drier conditions during lower ORM deposition, from >1300 mm/yr to ~700–1100 mm/yr to finally ~400–700 mm/yr.

In the middle ORM, ichnopedofacies shift to Camborygma inceptisols and calcic inceptisols (Figs 4, 12). Camborygma likely formed during annual precipitation of ~1100 mm (Jager, 1982); stage 2 carbonate then formed and moved upward in the profile as precipitation dropped towards ~700 mm/yr. Despite a decrease in precipitation during formation of the Camborygma inceptisols and calcic inceptisols, precipitation levels were still higher than during formation of the rhizolith calcic alfisols lower in the section. The reappearance of Camborygma at the top of the middle ORM suggests a return to precipitation levels of ~1100 mm/yr heading into the middle ORM-upper ORM contact.

Ichnopedofacies shift to Naktodemasis alfisols and Naktodemasis inceptisols and calcic inceptisols in the upper ORM (Figs 4, 12). Precipitation levels were likely ~1100 mm/yr at the base of the upper ORM, then decreased to ~700 mm/yr up section. Increasing sediment deposition during drier climate, however, shortened the duration of pedogenesis and precluded formation of more numerous carbonates in these ichnopedofacies.

Ichnopedofacies shift from Naktodemasis inceptisols and calcic inceptisols to rhizolith inceptisols and shallowly burrowed entisols in the CRM, indicating a change from high, steady sedimentation to higher, nonsteady sedimentation rates and shorter duration of pedogenesis (Figs 4, 12; Kraus, 1999; Hasiotis and Platt, 2012). Sediment reworking by meandering and braided rivers, frequent overbank flooding, and proximity to the fluvial channel prevented the formation of better developed palaeosols and deeper penetrating organisms higher in the member. Shallowly burrowed entisols associated with playa lake deposits are similar to modern shallow playa lakes in Australia (~35°S) that form under a precipitation regime of 325 mm/yr (Tellier and Last, 1990). This comparison suggests that shallowly burrowed entisols in playa lake deposits formed under an annual precipitation of ~325 mm. Rhizoliths in CRM ichnopedofacies give a lower limit for precipitation levels. In the modern Namib desert of Namibia (~23–24°S), the precipitation limit of vegetated surfaces is ~25 mm/yr (Amit et al., 2010). This suggests mean annual precipitation towards the end of CRM deposition was ~325–25 mm. The shift from Naktodemasis inceptisols and calcic inceptisols to shallowly burrowed entisols and rhizolith inceptisols suggests precipitation levels decreased from ~400 mm/yr to ~325–25 mm/yr, and that moisture still entered the environment until the very end of Chinle Fm deposition (Dubiel, 1987; Dubiel et al., 1991; Dubiel and Hasiotis, 2011).

Hydrology: Groundwater and soil moisture conditions, influenced by climate and proximity to alluvial and lacustrine systems (Hasiotis, 2002, 2004, 2008; Hasiotis et al., 2007a, 2012), varied during Chinle FM deposition, affecting stratigraphic distribution of ichnofossils and depths of burrowing (Figs 4, 12). The wettest intervals are the PFM, base of the lower ORM, and base of the upper ORM. These units also have the greatest occurrences of Camborygma, which penetrate below the water table into the phreatic zone (Hasiotis and Mitchell, 1993; Hasiotis et al., 1993; Hasiotis, 2002). Higher precipitation in the PFM, base of the lower ORM, and base and top of the middle ORM, and base of the upper ORM resulted in a shallower water table, and more common burrowing by crayfish. Times of decreased precipitation outside of these intervals, however, resulted in deepened water tables, and less common burrowing by crayfish. No Camborygma is present in the CRM; precipitation was too low and the water table was too deep for Camborygma to form. An overall decrease in the water table during Chinle Fm deposition caused Naktodemasis to occur less often up section and have greater burrowing depths.

The only instances where hydrophilic and hygrophilic behaviour, including Camborygma, occurred during times of decreased precipitation are in levee deposits in the middle and upper ORM. Restriction of deep burrowing to proximal deposits and the predominance of hygrophilic behaviours indicate fluvial systems fed the groundwater in CRM time.

Ichnofossils displaying terraphilic behaviour become more dominant up section during Chinle Fm deposition (Figs 4, 12). In the PFM, lower ORM, and middle ORM, a variety of ichnofossils displaying all four burrowing behaviour categories are observed in floodplain and palustrine deposits. By upper ORM deposition, Naktodemasis and root ichnofossils dominate palaeosol profiles. Root ichnofossils become the only ichnofossils present in floodplain deposits in the CRM. Decreasing water tables through Chinle Fm deposition – due to decreasing precipitation levels – expanded the vadose zone and created conditions favourable to terraphilic burrowers. By CRM deposition, soil moisture conditions became too dry to support organisms other than occasional plants.

CLIMATIC VARIATION IN THE CHINLE BASIN

Numerous investigations support increasing aridity throughout Chinle Fm deposition, but there is disagreement concerning the details and cause of this climate shift
Monsoonal indicators in ichnopedofacies of the PFM and ORM in this study indicate that palaeomonsoon circulation did not collapse during deposition of either of these members. Playa lake, braided river, and meandering river deposits in the CRM further suggest strongly seasonal moisture until the end of Chinle Fm deposition, supporting the continuation of monsoonal conditions until the end of the Triassic. Gradual drying was likely due to the migration of Pangaea into the midlatitudes (Dubiel et al., 1991; Dubiel and Hasiotis, 2011).

Research in the Chinle Basin of alluvial and lacustrine deposits did not identify any Milankovitch cyclicity (e.g., Prochnow et al., 2006a; Cleveland et al., 2008a; Atchley et al., 2013; Nordt et al., 2015; this study). Olsen and Kent (1996, 1999), Olsen et al. (1996), and Olsen (1997) identified precession cycles nested within eccentricity cycles in Upper Triassic lacustrine deposits of the Newark Basin. The lack of well-preserved Milankovitch cyclicity in north-east Chinle Basin ichnopedofacies of the MM, PFM, ORM, and CRM can be attributed to: (1) autocyclic channel migration and overbank flooding episodes that produced variable duration of pedogenesis; and (2) the cut and fill nature of deposits obscured the preservation of cycles throughout the entire formation.

Climate indicators suggest wet-dry patterns in precipitation across the Chinle Basin. In eastern Utah, Prochnow et al. (2006a) suggested precipitation decreased from >1400 mm/yr to ~400 mm/yr during PFM deposition, and increased from ~400 mm/yr to ~600 mm/yr during deposition of the ORM and CRM. Atchley et al. (2013) and Nordt et al. (2015) interpreted highly fluctuating moisture conditions during deposition of the upper PFM and ORM at PPFN and the surrounding vicinity, with highs of ~1000 mm/yr during wet periods and lows of ~200 mm/yr during dry periods. Nordt et al. (2015) additionally identified a humid period with mean annual precipitation (MAP) of ~900 mm near the base of the ORM. In northern New Mexico, Cleveland et al. (2008a) determined MAP between ~200–450 mm for PFM to RPM deposition, and the RPM contained wet-dry fluctuations. This research, however, did not address the mechanism behind these wet-dry cycles, instead it focused on longer term climatic trends and controls (Cleveland et al., 2008a; Atchley et al., 2013; Nordt et al., 2015).

These low MAP values are at odds with the location of the Chinle Basin in sub-30° palaeolatitudes under a mega-monsoonal regime in greenhouse conditions (Dickinson, 1981; Parrish and Peterson, 1988; Bazard and Butler, 1991; Dubiel et al., 1991; Dubiel, 1994; Dubiel and Hasiotis, 2011). They are also lower than precipitation values for modern, near-equatorial environments affected by monsoons, such as the Serengeti plains of Tanzania (e.g., Oliver, 1973; Jager, 1982; Lydolph, 1985; Aber and Melillo, 1991; Sinclair et al., 2007) and central India (e.g., Shrivastava et al., 2002; Shankar and Achyuthan, 2007).

Estimated precipitation values determined in our study of the north-east Chinle Basin by utilizing ichnopedofacies and modern environmental and latitudinal analogues (Fig. 4) are, in general, higher than MAP values determined through geochemical methods alone in previous research elsewhere in the Chinle Basin. For the PFM, Prochnow et al. (2006a), Atchley et al. (2013), and Nordt et al. (2015) do have precipitation estimates of ~1000 mm/yr, and even up to ~1400 mm/yr in the case of Prochnow et al. (2006a). Their MAP estimates are similar to the ~1100–1300 mm/yr precipitation levels determined in our study. Cleveland et al. (2008a), however, only estimated ~200–450 mm MAP for PFM equivalent deposits, well below our estimates for the north-east Chinle Basin. For ORM deposits in eastern Utah, the estimated ~400–500 mm MAP by Prochnow et al. (2006a) is significantly lower than the ~400–1300 mm/yr range in precipitation levels suggested by ichnopedofacies. Atchley et al. (2013) and Nordt et al. (2015), however, estimate MAP up to ~1000 mm/yr during wet intervals in the ORM at PPFN, which is within our range of estimates for the north-east Chinle Basin. Their MAP estimates for dry intervals, however, are as low as ~200 mm/yr, which is half of the estimates based on ichnopedofacies. Cleveland et al. (2008a) has even lower precipitation estimates for the Chinle Fm in New Mexico. Palaeosols in the RPM at Ghost Ranch have estimated MAP of ~200–450 mm based on depth-to-carbonate functions. These palaeosols also exhibit gleyed soil matrix, wedge-shaped peds, abundant semi-plastic fabrics, and Camborygma eumekenomos 20–80 cm deep that are lined with carbonate nodules. These palaeosols have similar appearance to Camborygma calcic inceptisols in the north-east Chinle Basin, with an estimated MAP of ~700–1100 mm.

These variations in MAP interpretations highlight the importance to integrate ichnological and pedogenic features—to create ichnopedofacies—into paleoprecipitation estimates that are correlated to modern environmental and latitudinal analogues in order to build more accurate climate models. The main reason for this variation is the use of different indicators to estimate annual precipitation. Some of these studies did attempt to assign modern soil classifications to palaeosols, but none combined both the ichnological and pedogenical features, nor compared palaeosols to modern environmental, behavioural, and latitudinal analogues. Prochnow et al. (2006a), Atchley et al. (2013), and Nordt et al. (2015) used geochemical weathering indices to calculate MAP, but did not incorporate ichnological evidence into
their estimates. Cleveland et al. (2008a), while incorporating some pedogenic and ichnological features, determined MAP using depth-to-carbonate functions (DTCF), and stated that, as a consequence, MAP values were likely minimum estimates. Prochnow et al. (2006a) also used DTCF for some MAP estimates.

Despite the use of different climate indices, overall trends of palaeoprecipitation variation across the Chinle Basin are recognized. Although MAP values from New Mexico palaeosols may be underestimates, the lack of Camborygma from PFM equivalent units does suggest lower water tables and decreased precipitation was present south of the north-east Chinle Basin during this time period. An east–west trend in precipitation values is also recognized. In the north-east Chinle Basin, a Camborygma Vertisol is observed within the lower ORM at south-west section (Figs 4, 12), and represents the highest precipitation levels in our study area at >1300 mm/yr. This ichnopedofacies appears to occur in the same stratigraphic interval as the 900 mm/yr humid pulse at PFNP, which falls well within the precipitation estimates from our study. Both the centre and north-east edge of the Chinle Basin contain evidence for a pulse of wetter conditions, but estimated precipitation was higher during the wetter interval in the north-east Chinle Basin. Precipitation levels in the north-east Chinle Basin varied from levels at the south-east edge and centre of the basin. Climatic conditions were, therefore, not consistent across the Chinle Basin during the Late Triassic.

CONCLUSIONS

Twelve ichnopedofacies, constructed from seventeen ichnofossil morphotypes and six palaeosol orders, were identified in the Chinle Fm of the north-east Chinle Basin: 1) Shallowly burrowed entisols; 2) rhizolith entisols; 3) Camborygma entisols; 4) Naktodemasis-Camborygma entisols; 5) rhizolith inceptisols; 6) Naktodemasis inceptisols and calcic inceptisols; 7) Camborygma inceptisols and calcic inceptisols; 8) Therapsid inceptisols and calcic inceptisols; 9) Camborygma vertisols; 10) Naktodemasis alfisols; 11) Naktodemasis calcic alfisols; and 12) rhizolith calcic alfisols.

Ichnopedofacies development and their lateral and vertical distribution reveal that the north-east Chinle Basin was influenced by a variety of physicochemical controls:

1. Higher frequency of channel migration and overbank flooding in the MM resulted in poorly developed, compound inceptisols and entisols.
2. Basin subsidence controlled the development of fluvial systems. Sand sheets of braided river deposits suggest decreased subsidence, decreased accommodation, frequent fluvial reworking, and reduced duration of pedogenesis in the MM. A shift to ribbon sand bodies in the PFM and ORM suggest meandering rivers with increased subsidence, increased accommodation, less fluvial reworking and greater duration of pedogenesis. Sheet and ribbon sand deposits in the CRM suggest a decrease in basin subsidence, leading to increased accommodation, more fluvial reworking, and a shorter duration of pedogenesis. Ribbon sand deposits in the CRM, however, indicate accommodation was still greater than in the MM, allowing for the preservation of playa lake deposits.
3. Changes in base level cut and filled palaeovalleys, preserving the palaeotopography present during Chinle Fm deposition. Topographic position and changes in rate of valley fill influenced ichnopedological development. High, nonsteady sedimentation and decreased accommodation in the MM resulted in compound entisols. Low, nonsteady sedimentation during PFM and lower ORM deposition resulted in more developed, compound and composite ichnopedofacies. An increase in nonsteady sedimentation led to more frequent autocyclic deposits in the middle ORM and a transition from composite, calcic ichnopedofacies to compound and composite, non-calcic ichnopedofacies. Sedimentation rate slightly decreased and shifted to steady state sedimentation in the upper ORM, resulting in cumulative and composite ichnopedofacies. A shift back to nonsteady sedimentation deposition in the CRM and increasing sedimentation rates resulted in a transition from composite, calcic ichnopedofacies to compound entisols and inceptisols. Overall, a south to north trend of decreasing rates of valley fill is observed in the PFM, lower ORM, and upper ORM.
4. Salt tectonism led to the uplift and cannibalization of lacustrine deposits. Increased accommodation in the lower ORM enabled the formation of lakes with oncoids. Following halokinetic uplift and erosion, oncoids were redeposited in laterally accreted conglomerate beds, remaining the only indicator of previous lacustrine systems in the study area.
5. Climate overall became drier during Chinle Fm deposition with multiple smaller wet-dry cycles. This pattern is reflected in the alternations between calcic and non-calcic ichnopedofacies, and polygenetic palaeosol formation with calcium carbonate nodules overprinting gleyed horizons and ichnofossils.
6. Groundwater and soil moisture conditions largely mirror changes in climate. The water table, influenced by precipitation, decreased up section during Chinle Fm deposition, and ichnofossils reflecting hydrophilic and hygrophilic behaviours also decreased up section. Ichnofossils displaying hydrophilic and hygrophilic behaviours during periods of decreased precipitation indicate a shallower water table fed by nearby rivers. No ichnofossils displaying hydrophilic behaviour are present in the CRM; instead hygrophilic behaviour is observed in...
levee deposits where local water tables were higher. Ichnofossils displaying terraphilic behaviour become more dominant up section, and root ichnofossils become the only ichnofossils observed in CRM deposits. Naktodema-

sis overprinting the burrow fill of Camborygma in ORM and CRM fluvial deposits reflect drops in the water table following flooding events or small-scale drying cycles.

Signatures of seasonality and decreasing precipitation are seen throughout Chinle Fm deposition in the north-east Chinle Basin.

1. Therapsid inceptisols and calcic inceptisols in the PFM suggest an annual precipitation of ~1100–1300 mm with carbonate buildup during drier periods.

2. Camborygma vertisols in the lower ORM indicate highly seasonal precipitation >1300 mm/yr with fluctuating water tables. Thick Btk horizons with stage 2–3 carbonate in overlying Naktodema-

sis calcic alfisols and rhizolith calcic alfisols indicate a decrease in precipitation from ~700–1100 mm/yr to ~400–700 mm/yr and short-term drying cycles.

3. Camborygma inceptisols and calcic inceptisols in the middle ORM suggest highly fluctuating water tables and a decrease in annual precipitation from ~1100 mm to ~700 mm. Reappearance of Camborygma at the top of the middle ORM indicates precipitation increased to ~1100 mm/yr heading into the upper ORM.

4. Transition to Naktodema-

sis alfisols and Naktodema-

sis inceptisols and calcic inceptisols in the upper ORM suggest another drying cycle from ~1100 mm/yr to ~700 mm/yr.

5. Naktodema-

sis inceptisols and calcic inceptisols near the base of the CRM suggest precipitation levels of ~400 mm/yr. Rhizolith inceptisols and playa lake deposits with shallowly burrowed entisols suggest a precipitation decrease to ~325–25 mm/yr near the end of Chinle Fm deposition. Despite extended dry periods, the presence of braided river, meandering river, and playa lake deposits indicate that moisture was still present until the end of the Triassic.

Ichnopedofacies suggest monsoonal circulation continued throughout Chinle Fm deposition and did not fully collapse until the end of the Triassic Period and the migration of Wingate Sandstone eolian dunes into the area of the Colorado Plateau.

The Late Triassic in the Chinle Basin was characterized by complex climatic patterns which greatly influenced local depositional environments, palaeotopography, hydrology, pedogenic development, and ichnofossil distribution. Most variation in estimates of precipitation levels across the Chinle Basin can be attributed to the use of different climate indices between studies. The use of ichnofopedofacies and modern soil, environmental, behavioural, and latitudinal analogues in our study resulted in higher MAP values in general than previous studies of the Chinle Basin, which utilized geochemical weathering indices and depth-to-carbonate functions. Variations between MAP values highlights the need to incorporate ichnopedological features and modern environmental, behavioural, and latitudinal analogues into precipitation estimates to develop more accurate climate models. MAP estimates from previous studies are too low for the interpretation of the Chinle Basin being deposited in sub-30° palaeolatitudes under a megamonsoonal regime in greenhouse conditions.

This is the first study to establish ichnopedofacies in the Chinle Fm. Ichnopedofacies have proved to be useful tools for interpreting fine-scale sedimentological, hydrological, and climatic conditions of Chinle Fm deposits. Future use in other Chinle Fm localities will aid in working out detailed interpretations of the timing of climatic changes and cyclicity in precipitation and will further the understanding of the spatial and temporal variations in climatic conditions in the south-west United States during the Late Triassic. Ichnopedofacies, however, are not confined for use only in the Chinle Fm. There is great potential in expanding ichnopedofacies to other continental strata.

Acknowledgements

We thank A. Hess, and R. Rader for assistance in the field. Thanks to D. Hirmas for help in identifying palaeosols, and to V. Day for assistance in XRD sample analysis. Thanks to the Geological Society of America and the American Association of Petroleum Geologists for funding SJF. Finally, we thank the IchnoBioGeoSciences Group at the University of Kansas for help and support during this project. We thank J. W. Counts and two anonymous reviewers for comments and suggestions, which improved the manuscript.

REFERENCES

Amit, R., Enzel, Y., Grodek, T., Crouvi, O., Porat, N. & Ayalon, A., 2010. The role of rare rainstorms in the formation of calcic soil horizons on alluvial surfaces in extreme deserts. Quater-

