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The Sirte Basin is located in the north-central part of 
Libya (Fig. 1). It is a basin characterized by a series of plat-
forms and deep troughs containing several oil and gas fields. 
Depositional history of the Sirte Basin started in the Early 
Cretaceous time, which has been related to the tectonic evo-
lution of the North African passive continental margin. The 
history of the Sirte Basin had been spanning the Cretaceous 
and Palaeogene times. It had been influenced by several 
marine transgressions and several rifting phases induced by 
the deformation of the North African continental margin. 
The relative sea-level changes and the tectonics might have 
greatly influenced the accomodation space, especially over 
the Western Sirte Basin (WSB) during the Palaeogene.

Because of the numerous oil and gas fields, the geolog-
ical history of the WSB was the subject of numerous stud-
ies (Berggren, 1963; Jordi and Lonfat, 1963; Furst 1964; 
Gohrbandt, 1966; Goudarzi, 1970; Conley, 1971; Barr and 
Weegar, 1972; Bezan, 1996). Its structural geology was the 
core of the publications of Klitzsch (1970, 1971), Anketell 

and Kumati (1991b), Abadi and Van Dijk (1993), Anketell 
(1996), Schröter (1996), Van Dijk and Eabadi (1996) and 
Knytl et al. (1996). Sedimentology and depositional histo-
ry of the basin have been studied by Selley (1967, 1968, 
1969, 1971), Williams (1972), Gumati and Kanes (1985) 
and Anketell and Kumati (1991a). Biostratigraphy of the 
Cretaceous carbonates of the Sirte Basin has benefitted 
from a relatively rich bibliography. Some of the promi-
nent papers on biostratigraphy are: Berggren (1969), Barr 
(1972), Barr and Berggren (1980), Eliagoubi and Powell 
(1980), Shakoor and Shagroni (1984), Butt (1986), Salaj 
and Nairn (1987), Tmalla (1992, 1996), Tawadros (2001, 
2012), Hallett (2002), Tshakreen et al. (2002), Salaj (2003), 
and Tshakreen and Gasiński (2004). 

The Late Cretaceous sediments outcropping in the Wadi 
Tar Al Kair on the western flank of Hun Graben (WBS) 
are representing the south-western Tethyan biogeographic 
realm they have been investigated for their foraminiferal as-
semblages. The Late Cretaceous sediments of the WSB have 
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INTRODUCTION
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been the core of a two-fold micropalaeontological analysis: 
most precise biostratigraphy and contribution of data for  
a comprehensive interpretation of the basin bathymetry.

GEOLOGICAL SETTING OF THE AREA

The Sirte Basin is located within the North African pas-
sive continental margin as an inland extension of the Gulf 
of Sirte. Its geological history is related to the tectonic evo-
lution of the North African continental margin (Klitzsch, 
1971; Jongsma et al., 1985; Anketell and Kumati, 1991a, b;  

Guiraud and Maurin, 1992; Anketell, 1996). Poly-phased 
extensional tectonics initiated the formation of the Sirte 
Basin in the Early Cretaceous time, and divided the ba-
sin into a succession of NW-SE trends of platforms and 
troughs (Fig. 1).

The Western Sirte Basin, as one of the largest sedimentary 
basins in North Africa, forms a broad NW-trending embay-
ment. To the present day, it is open to the Mediterranean Sea 
to the north, and bounded by the Tripoli Asswada Arch to 
the west and by the Cyrenaica Platform to the east (Fig. 1). 
Essentially the basin consists of several NW- to SE-trending 
structural highs alternating with adjacent troughs as the 

Fig. 1. Location map of the study area and views of the studied outcrops . A. Sketch map of Libya. B. Geological sketch 
map of the Western Sirte Basin including the investigated sections WTR 1 and WTR 2 at Wadi Tar Al Kair (western flank of 
Hun Graben). C. Outcrop view of the WTR 1 section at Wadi Tar Al Kair. D. Outcrop view of the WTR 2 section at Wadi Tar 
Al Kair.
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result of extensional tectonics (cf., Conant and Goudarzi, 
1967; Goudarzi, 1970).

Several attempts have been made by tectonics specialists 
to characterize the relationships between the North African 
plate motion and rifting within the Western Sirte Basin but 
the subject is still controversial (Anketell, 1996). According 
to Westaway (1996), the Western Sirte Basin is an active 
oblique-extensive area that can be regarded as an internal 
deformation of the African Plate adjusting its motion in  
a N-NE ward direction relative to Eurasia.

The Lower Tar Member, as the uppermost member 
of the Al Gharbiyeh Formation, is the core of the present 
study (Figs 2, 3) and was formerly included in the Zimám 
Formation (also called the Zmam Formation).The latest 
formation, which name was introduced by Jordi and Lonfat 
(1963), was composed of three members which from oldest 
to youngest are the Lower Tar, Upper Tar and Had mem-
bers. The type sections of these members are located on the 
western flank of the Hun Graben (Fig. 1). Previous impor-
tant studies on the Zimám Formation had been performed 
by Jordi and Lonfat (1963), Furst (1964), and Shakoor and 
Shagroni (1984). These latter considered the Socna Mollusc 
Bed as a key unit within the lower portion of the Upper Tar 
Member. However, Furst (1964) included the Socna Mollusc 
Bed as a separate unit. These studies considered the base of 
the Socna Mollusc Bed as the boundary between the Upper 
Cretaceous and Paleocene. The above stratigraphic scheme 
and its modifications have been used not only within the 
SW Western Sirte Basin (Shakoor and Shagroni, 1984) but 
also outside the Western Sirte Basin. Further to the revision 
of the Cretaceous sections, the Lower Tar Member was in-
corporated into the Al Gharbyeh Formation (cf., Hallett and 
Clark-Lowes, 2016).

In the studied locations, the Lower Tar Member consists 
of calcareous claystone, mudstone, shale and siltstone in-
terbedded with calcarenites. The calcarenite layers contain 
abundant shells of bivalves, gastropods and echinoid tests. 
This concentration of fossils gives rise to shell lag deposits 
that can be interpreted as storm layers. The thickness and 
frequency of the fossiliferous calcarenite layers increase up-
ward in the sections (Figs 2, 3).

The lower boundary of the Lower Tar Member is not ex-
posed in the study area and the upper boundary is located 
at the base of the Socna Mollusc Bed. This upper bound-
ary has been traditionally considered as the Cretaceous-
Palaeogene boundary (Jordi and Lonfat, 1963; Furst, 1964; 
Bar and Weegar, 1972). No micropalaeontological evidence 
for the Cretaceous-Palaeogene boundary in surface sec-
tions has ever been found so far. However, some authors 
(e.g., Eliagoubi and Powell, 1980) postulated an early to 
mid-Maastrichtian age for the Lower Tar Member with 
characteristic foraminiferids.

MATERIAL AND METHODS

Studies had been carried out on the Lower Tar Member in the 
Western Sirte Basin (WBS) within the frame of Project WSB 
no. 2383. Fieldwork was part of a joint study by Petroleum 
Research Centre Libya (now LPI) and Teknica Petroleum 

Services Ltd. (Canada) team members during the 1998 and 
1999 field seasons in the Western Sirte Basin area (Fig. 1). 
The stratotype section of the Lower Tar Member is the sur-
face sections of Wadi Tar Al Kair, all situated on the western 
flank of the Hun Graben (coordinates 29° 22’ N, 15° 42’ E,  
sections WTR1, WTR2).

The Wadi Tar Al Kair sections (WTR1, WTR2) are dis-
playing more than 35 m of Campanian-Maastrichtian sedi-
ments (LTM and Socna beds). Thirty-five samples, each 200 g  
weight were processed to retrieve foraminifera within the 
scope of searching of planktonic index taxa susceptible to 
frame a standard planktonic zonation as well as for palaeo-
bathymetric estimation.

Marlstones and limestones samples had been disintegrat-
ed by successive cycles of heating-and-freezing in Glauber’s 
salt. Some very soft samples were only soaked. The residue 
was washed through a set of sieves (65μm and 100μm in 
diameter). From each samples all specimens were collected 
and foraminiferal assemblages were quantitatively analysed 
for palaeoecological interpretation (see Fig. 4). Specimens 
were identified under stereoscopic and SEM microscopes. 
Thin sections were processed to observe the inner structures 
of shallow-water large benthic foraminifers.

RESULTS

The examined sediments are containing rich assem-
blages of relatively well preserved planktonic foramini-
fers, all characterized by the dominance of heterohelic-
ids, globigerinelloidids, hedbergellids, rugoglobigerinids, 
globotruncanids, and globotruncanelloids. The benthic 
foraminifers, especially the large ones, are numerous in the 
middle and upper parts of the studied sections. Composition 
changes in the foraminiferal assemblages are shown in 
Figures 2 and 4, while selected species of planktonic and 
benthic foraminifers are illustrated in Figures 5 and 6.  
A brief description of these changes is given below.

Samples WTR1-1 – WTR2-7 contain diversified as-
semblages with keeled taxa, including: Globotruncana 
aegyptiaca Nakkady, Globotruncana arca (Cushman), 
Globotruncana bulloides Vogler, Globotruncana falsostu-
arti Sigal, Globotruncana rosetta (Carsey), Globotruncana 
ventricosa (White), Globotruncana subspinosa Van 
Hinte, Globotruncana stuarti (Lapparent), Gansserina 
gansseri (Bolli), Contusotruncana contusa (Cushman), 
Contusotruncana fornicata (Plummer), pseudo-keeled 
taxa such as Globotruncanella havanensis (Voorwijk), 
and globular morphotypes consisting of Globotruncanella 
sp. and non-keeled Hedbergella holmdelensis Olsson, 
Heterohelix striata (Ehrenberg), Heterohelix globu-
losa (Cushman), Globigerinelloides prairiehillensis 
Pessagno, Planoglobulina sp., Rugoglobigerina macro-
cephala Brönnimann, Rugoglobigerina rugosa (Plummer), 
Rugoglobigerina scotti (Brönnimann), Archaeoglobigerina 
blowi Pessagno (Figs 2, 4–6). These assemblages differ 
from that of the overlying strata (WTR2-8) with a high 
number of trochospiral forms, mainly rugoglobigerinids 
Rugoglobigerina rugosa (Plummer), Rugoglobigerina 
macrocephala Brönnimann, (Figs 2, 4, 6, 7). Further up 
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Fig. 2. Composite stratigraphic column of surface sections WTR 1 and WTR 2 at Wadi Tar Al.

in the profile (WTR2-9–WTR2-10) significant faunal 
changes are observed in the benthic and planktonic 
foraminiferalassemblages: i.e., the dominance of large 
benthic calcareous, lamellar foraminifera (LBF), Siderolites 
calcitrapoides Lamarck, Omphalocyclus macroporus 
(Lamarck) (Figs 2, 4, 6, 7) then the dominance of globular 
heterohelicids and rugoglobigerinids, and finally the disap-
pearance of planktonic keeled forms and rugoglobigerinids. 

Small benthic calcareous foraminifers and agglutinated for-
aminifers are also worth noticing.

The higher part of the studied section is solely character-
ised by benthic foraminiferids and globular heterohelicids, 
e.g., Racemiguembelina fructicosa (Egger), the index taxa 
for Racemiguembelina fructicosa Zone, rugoglobigerinids 
and the disappearance of planktonic keeled forms and 
 a lower number of rugoglobigerinids.
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Fig. 3. Composite stratigraphic column of surface section on the western flank of the Hun Graben. Range of planktonic 
foraminifera. Correlation between planktonic foraminiferal zonation and large benthic foraminiferal zonation .

The foraminiferal assemblages from the highest part of 
the section are displaying a very low diversity with globu-
lar (non-keeled) planktonic forms, mainly heterohelicids and 
globigerinelloidids, and some benthic forms (WTR2-11– 
–WTR2-25). All the samples above WTR2-25 are character-
ized by the occurrence of single LBF (Siderolites calcitrapoi-
des Lamarck, Omphalocyclus macroporus (Lamarck) in very 
bad state of preservation, and no planktonic foraminiferid 

has been retrieved so far. Globotruncana aegyptiaca and 
Gansserina gansseri are commonly found in samples from 
the Lower Tar Member sections. Radotruncana cf. calcara-
ta occurs as a single specimen in sample WTR1 and its bad 
state of the preservation do not allow a precise designation. 
Globotruncana aegyptiacaoccurs in sample WTR1-2 and 
persists upwards. The Gansserina gansseri occurs in sample 
WTR2-7 and is present in the overlying strata (Fig. 2).
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Fig. 4. Vertical fluctuations of foraminiferal assemblage composition and of estimated palaeo-depths, mainly based on 
appearance of large benthic shallow-water foraminiferids.

INTERPRETATIONS

Planktonic foraminiferal biostratigraphy

In the following, we are using the standard plankton-
ic foraminiferal zonations proposed by Caron (1985), 
Robaszyński and Caron (1995), Ogg et al. (2004, 2012) and 
Premoli-Silva and Verga (2004). Planktonic foraminifera of 
the studied sections comprising planktonic foraminifera taxa 
that are important biostratigraphical markers, particularly 
in the Tethyan Realm, and correlation with the standard 
planktonic foraminiferal zonation are possible, however 
sometimes difficult because of the bad preservation or 
single occurrence of the taxa.

The top of the Radotruncana calcarata Total Range Zone 
(late Campanian) is identified thanks to the occurrence of 
the zonal index species in sample WTR 1-1. The concept 
of the Radotruncana calcarata Zone (late Campanian) 
is largely discussed by Robaszyński et al. (2000), 
Robaszyński and Mzoughi (2010) and Voigt et al. (2010, 
2012). Recognized in Tercis (GSSP; Landes, France), in 

the Bottaccione and Contessa sections (Apennines Italy) as 
well as in the spectacular sections in North Africa (e.g., at  
El Kef, Tunisia), the R. calcarata Zone is defined by the 
total stratigraphic range of R. calcarata, which is consid-
ered as globally synchronous. Notwithstanding, at Tercis, 
the R. calcarata Zone is based only on the occurrence of two 
poorly-preserved specimens, and we must keep in mind that 
the total range of this zone might possibly not be recorded 
in full. Most micropalaeontologists working on the North 
African sections are considering that the Campanian ends 
with the upper limit of the Radotruncana calcarata Zone 
(cf. Robaszyński and Mzoughi, 2010). According to them, 
R. calcarata appears in the upper part of the ammonite 
Nostoceras (B.) polyplocum Zone and becomes extinct be-
low the Nostoceras hyatti Zone, which is well below the 
Campanian-Maastrichtian boundary. In sample WTR1-1, 
the first and single occurrence of R. cf. calcarata is noted 
(Fig. 2). Therefore, the recognition of this zone should be 
treated with some caution.

One would assume that samples WTR1-2 to WTR1-6  
represent the Globotruncana aegyptiaca Zone (late 
Campanian) and samples WTR2-7-WTR2-11 represent the 
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Fig. 5. SEM images of Upper Cretaceous significant planktonic foraminifera from the studied interval. 
A. Heterohelix planata (Cushman), sample WTR2-10; B. Pseudotextularia elegans (Rzehak), WTR2-14;  
C. Rugoglobigerina macrocephala Brönnimann, sample WTR2-24; D. Rugoglobigerina macrocephala  
Brönnimann,WTR1-6; E. Rugoglobigerina rugosa (Plummer), sample WTR2-24; F. Rugoglobigerina 
rugosa (Plummer), sample WTR2-11; G. Rugoglobigerina rugosa (Plummer), sample WTR2-17;  
H. Rugoglobigerina rugosa (Plummer), sample WTR2-19; I. Rugoglobigerina rugosa (Plummer), sample  
WTR2-18; J. Rugoglobigerina rugosa (Plummer), sample WTR2-15; K. Rugoglobigerina rugosa (Plummer), 
sample WTR2-23; L. Rugoglobigerina rugosa (Plummer), sample WTR2-22; Ł. Rugoglobigerina rugosa 
(Plummer), sample WTR2-25; M. Rugoglobigerina rugosa (Plummer), sample WTR2-25; N. Rugoglobigerina 
cf. scotti (Brönnimann), sample WTR.2-17; O. Rugoglobigerina sp., WTR1-5; P. Rugoglobigerina sp., sample 
WTR1-4; Q. Globotruncanella cf. citae (Bolli), sample WTR2-7; R. Globotruncanella havanensis (Voorwijk), 
WTR1-1; S. Archaeoglobigerina blowi Pessagno, sample WTR2-8; T. Archaeoglobigerina cf. blowi Pessagno, 
sample WTR2-11; U. Archaeoglobigerina cf. cretacea Pessagno, sample WTR2-11.
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Fig. 6. SEM images of Upper Cretaceous significant planktonic and large benthic foraminifera from the studied interval.  
A. Globotruncana cf. bulloides Vogler, sample WTR1-1; B. Globotruncana arca (Cushman), sample WTR1-1; C. Rugoglobigerina 
macrocephala Brönnimann, sample WTR2-24; D. Globotruncana bulloides Vogler, sample WTR1-1; E. Globotruncana bulloides  
Vogler, sample WTR1-6; F. Globotruncana falsostuarti Sigal, sample WTR1-6; G. Rugoglobigerina rugosa (Plummer), 
sample WTR2 -17; H. Globotruncana ventricosa (White), sample WTR1-1; I. Globotruncanella havanensis (Voorwijk), sam-
ple WTR1-1; J. Rugoglobigerina rugosa (Plummer), sample WTR2-15; K. Gansserina gansseri (Bolli), sample WTR2-9;  
L. Rosita contusa (Cushman), sample WTR2-7; M. Rosita fornicata (Plummer), sample WTR1-4; N. Abathomphalus sp.  
WTR2-25; O. Isolated species of Omphalocyclus; P. Isolated species of  Siderolites; R. Isolated species of Siderolites.
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Gansserina gansseri Zone. The Globotruncana aegyptiaca 
Zone (interval zone) between the first occurrence (FO) of 
the nominal species and the FO of Gansserina gansseri.  
The lower boundary of the zone is at the top of the first quar-
ter of chron 32 R2 (Premoli Silva and Sliter, 1994). The top 
is at the FO of Gansserina gansseri.

Gansserina gansseri, index species of the Gansserina 
gansseri Interval Zone (late Campanian–early Maastrich- 
tian), starts to occur in sample WTR2-7 and is present in the 
overlying strata (Fig. 2). The lower boundary of this zone is the 
FO of the index species in the high part of chron 32 N2 (Premoli 
Silva and Sliter, 1994). The top of this zone is marked by 
the FO of Abathomphalus mayaroensis (Bolli) (Robaszyński  
et al., 1984; Caron, 1985). The Lower Tar Member was as-
signed to Maastrichtian on the basis of ammonites Nostoceras 
magdadiae Lefeld and Uberna, 1991 and Baculites sp. (Lefeld 
and Uberna, 1991). However, Salaj and Nairn (1987) previous-
ly suggested a late Campanian–Maastrichtian age. According 
to Cretaceous microfossil biostratigraphy (Bralower et al., 
1995; Robaszyński and Caron, 1995; Machaniec, 2002; 
Gasiński and Uchman, 2009, 2011; Ţabără et al., 2017),  
the stratigraphic range of the Gansserina gansseri Zone 
spans across the Maastrichtian–Campanian boundary, which 
has been dated as approximately 71.3 My (Fig. 3). Taking 
into consideration integrated geomagnetic polarity and strati-
graphic time scale for the Cretaceous Period (Gradstein 
et al., 1994; Gradstein and Ogg, 2004; Ogg et al., 2004, 
2012), the Campanian-Maastrichtian boundary was situ-
ated within the Lower Tar Member (Fig. 2). According to 
the current time scale, the Globotruncana aegyptiaca Zone 
belongs entirely to the late Campanian stage (Gradstein  
et al., 1994; Ogg et al., 2004, 2012). Therefore, the lower part 
of the Lower Tar Member exposed in the type locality at Wadi 
Tar is of Campanian age rather than of Maastrichtian age as 
formerly proposed.

Fig. 7. Microphotographs of thin section. A. Pf – planktonic foraminiferHedbergella sp.axial section; Sc– Siderolites sp. large ben-
thic foraminifer, oblique section; Bf – benthic calcareous forms Nodosaria sp., axial section; LBF – part of large benthic foraminifer, 
oblique section; LBF– part of large benthic foraminifer, oblique section, WTR 2-10. B. Sc – Siderolites calcitrapoides large benthic  
foraminifer, oblique section, WTR2-11. C. Sc – Siderolites sp. large benthic foraminifer – oblique section; Pf –planktonic form 
Archaeoglobigerina sp.– axial section, WTR2-9

A worth mentioning fact about the stratigraphic record of 
the uppermost Cretaceous strata at the western margin of the 
Western Sirte Basin is that the latest Maastrichtian nominal 
index species, Abathomphalus mayaroensis has not been 
found in the surface outcrops. All the samples collected 
above sample WTR2-25 appear to be barren of planktonic 
foraminiferids. Although there could be several reasons for 
this dearth of youngest Cretaceous planktonic, the most like-
ly one, consistent with the sedimentological observations,  
is that being a hiatus at the peak of the Cretaceous regression. 
The most plausible explanation of the absence of index taxa 
Abathomphalus mayaroensis is the bathymetry, because this 
species is bathypelagic, thus absent in shallower areas of 
the basin (Farouk, 2014; Kędzierski et al., 2015). Another 
argument is the fact that A. mayaroensis is seldom found in 
tropical areas (Premoli-Silva and Verga, 2004; Abdallah and 
Obaidalla, 2013).

The present study evidences that the Lower Tar Member 
section in the type localities at the Wadi Tar belongs in the 
lower part to the late Campanian (Radotruncana calcarata,  
Globotruncana aegyptiaca zones and lower part of the 
Gansserina gansseri Zone), and the upper part belongs to 
the middle–late Maastrichtian (Gansserina gansseri Zone, 
Racemiguemelina fructicosa Zone, Fig. 3).

Large benthic foraminiferal biostratigraphy

Large benthic foraminifers recorded in the Wadi Tar sec-
tion [Siderolites calcitrapoides Lamarck and Omphalocyclus 
macroporus (Lamarck)], have a stratigraphic value (Robles-
Salcedo et al., 2013, 2018), which indicate the middle–late 
Maastrichtian (Fleury et al., 1985; Caus, 1988; Abdelghany, 
2003; Caus et al., 2010).
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PALAEOECOLOGY

Analyses of foraminiferal assemblage compositions pro-
vided first-order data to precise the biostratigraphic and 
palaeobathymetric estimations and the direction of palae-
oslope inclination based on models proposed respectively 
for planktonic foraminifers (e.g., Sliter, 1972; Sliter and 
Baker, 1972; Olsson and Nyong, 1984; Gasiński, 1997, 
1998) and for large benthic foraminifers (e.g., Hottinger, 
1983, 1997, 2006; Hallock and Glenn, 1986; Hohenegger, 
1994, 1995, 1996, 2009; Machaniec et al., 2011; Robles-
Salcedo et al., 2013, 2018).

Palaeobathymetric estimation based on recent fora-
miniferids and analyses of basic literature have been pro-
posed by Hemleben et al. (1989). According to current 
conventions, the ratio of planktonic to benthic species gives 
an indication of the open ocean versus near shore habitat of 
the foraminifera at the time of skeletal deposition. Similar 
restrictions on species survival and abundance have been 
found in fossil sediments (e.g., Eicher and Worstell, 1970; 
Douglas, 1972; Sliter, 1972; Sliter and Baker, 1972; 
Boersma and Shackleton, 1981; Caron and Homewood, 
1983; Leckie, 1987).

Sedimentary environmental changes on the western flank 
of the Hun Graben are clearly visible in the vertical fluc-
tuations of the foraminiferal assemblage compositions in 
the Lower Tar Member. Quantitative relationships between 
planktonic and benthic foraminiferids, and shallow marine 
fossils, in the Lower Tar Member, are shown in Fig. 4. There 
are significant differences in the fossil content between the 
lower and upper portions of the Lower Tar Member.

The lower portion, from samples WTR1-1 to WTR1-7 
(Radotruncana calcarata, Globotruncana aegyptiaca and 
Gansserina gansseri zones), is dominated by highly diver-
sified bathypelagic planktonic foraminiferids (globotrun-
canids). In contrast, the upper portion of the Lower Tar 
Member, from samples WTR2-11 to WTR2-25 (Gansserina 
gansseri, Racemiguembelina fructicosa zones) contains the 
epipelagic planktonic foraminiferids and a relatively large 
amount of benthic forms. Between the lower and the up-
per parts of the section lies a middle interval represented by 
samples WTR2-8 to WTR2-10 (Gansserina gansseri Zone), 
which contains a high number of shallow water microfossils 
with an even proportion of planktonic and benthic forms.

These differences in the vertical distribution are interpret-
ed in terms of bathymetric variations and, hence, different 
depositional environments. The lower part of the Lower 
Tar Member (late Campanian, Radotruncana calcarata, 
Globotruncana aegyptiaca and lower part of Gansserina 
gansseri zones; samples WTR1-1–WTR1-7) had been 
most likely deposited in an open-marine to outer-shelf 
environment of considerable water depth. This is supported 
by the predominance of keeled planktonic foraminiferids 
which belong to the bathypelagic morphotypes (Figs 5, 6). 
The upper part of the Lower Tar Member (Maastrichtian, 
upper part of the Gansserina gansseri and Racemiguembelina 
fructicosa planktonic foraminiferal zones; Siderolites cal-
citrapoides large benthic foraminifera Zone; samples  
WTR2-8 to WTR2-10-25) had been probably deposited 
in a shallower environment. This is indicated by a high 

proportion of large benthic foraminifers typical of carbonate 
platform environments within the photic zone.

Quantitative and qualitative studies of planktonic fora-
minifers documented foraminiferal changes that can be used 
as a proxy tool for sea-level changes for the late Campanian 
and Maastrichtian in the studied area, from open-marine to 
littoral areas (Fig. 4). The latest Cretaceous regression could 
have caused a diminution of the water capacity over the 
slope and shelf and, hence, probably drove the extinction of 
bathy-pelagic species.

Additionally, an intermediate environment had developed 
between the open-marine to outer-shelf and the inner-shelf 
environments. The existence of such an environment is 
strongly supported by the foraminiferal assemblages of 
samples WTR2-8 to WTR2-10 (Figs 2, 4–7).

These assemblages consist of approximately equal pro-
portions of pelagic and benthic foraminiferids, with a large 
amount of shallow large benthic foraminifers. Such mixed 
assemblages can be interpreted as allochthonous shallow 
water foraminiferids assemblages transported into a deeper 
pelagic environment by density currents.

Foraminiferids from the Lower Tar Member of the Zimám 
Formation were previously studied and used for stratigraph-
ic and environmental interpretations (Eliagoubi and Powell, 
1980). Our results and subsequent interpretations differ 
from this early opinion. Eliagoubi and Powell (1980) pro-
posed two assemblage zones within the Lower Tar Member; 
namely, the Globotruncana fornicata Zone and the younger 
Globotruncana conica Zone. This latter was subdivided 
into the Globotruncana (Gansserina) gansseri Subzone and 
the Globotruncana contusa Subzone. When analyzing the 
alternations of the pelagic and shallow water assemblages 
of foraminiferids in the Lower Tar Member, Eliagoubi and 
Powell (1980, p. 151) postulated tectonically driven changes 
of sea-level as a main key factor upon sedimentation.

According to them, open-marine conditions favouring 
the accumulation of planktonic forms had been punctu-
ated by intervals of pronounced shallowing where few 
planktonic forms are preserved. Locally, at the top, the 
Globotruncana conica Zone at Dur Talah and near the 
middle of the same zone at Wadi Tar, the sudden abun-
dance of shallow-water, higher-energy, benthic forms from 
the euphotic zone (Omphalocyclus and Siderolites) clearly 
indicate a return to fault-controlled shallowing of the ba-
sin. The presence of these benthic foraminiferids associ-
ated with sea-grass is indicative of a clear, oligotrophic 
shallow-water setting, with a maximum depth of 15–30 m  
(Caus et al., 2016; Hart et al., 2016). The presence of 
Siderolites is the mere piece of evidence of shallow-water 
environments, mainly carbonates, of tropical to subtropi-
cal platforms (Robles-Salcedo et al., 2013).

The changes in the pelagic and shallow-water assem-
blages, especially the co-occurrence of shallow-water fos-
sils with planktonic ones in the same samples, can also in-
dicate a possible redeposition and not only a shallowing. 
Mobilization of foraminiferal ooze and its distribution by 
dilute suspension currents have been documented from 
many deep-water marine settings. Tectonic influence on 
the redeposition process is very likely but does not imply 
necessarily a significant shallowing of the depositional 
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environment in the middle part of the Lower Tar Member as 
postulated Eliagoubi and Powell (1980).

The shallowing of the depositional environment of the 
Lower Tar Member was rather gradual and consistent with 
the global regression recorded at the end of the Cretaceous 
Period. This does not require to interpret them in terms of 
tectonically-driven relative sea-level changes. The transi-
tion from the Cretaceous to the Palaeogene is marked in the 
Western Sirte Basin by regressive deposits coinciding with 
a major, worldwide regression (Hallam, 1963; Ager, 1981; 
Haq et al., 1987; Haq, 2014).

CONCLUSIONS

The Lower Tar Member exposed in the stratotype sec-
tions of Wadi Tar Al Kair in the Western Sirte Basin spans 
four standard planktonic foraminiferal zones, i.e. the 
Radotruncana calcarata Zone, Globotruncana aegyptiaca 
Zone (late Campanian), the Gansserina gansseri Zone (late 
Campanian–middle Maastrichtian) and Racemiguembelina 
fruticosa and one standard large benthic foraminiferal zone 
on the basis of the index species Siderolites calcitrapoides 
for the middle–late Maastrichtian.

Changes in the foraminiferal assemblages, especially the 
presence of the large benthic foraminifers, supports a pos-
itive correlation between benthic assemblage composition 
and intensity of shallowing.

The highest sea-level is located in the late Campanian. 
Large benthic foraminifera are mere evidence of inner-shelf 
palaeo-depths in Maastrichtian. A significant shallowing 
is inferred in the middle/late Maastrichtian, followed by  
a deepening and again shallowing in the late Maastrichtian 
on the western margin of the Sirte Basin.
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