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Abstract: The crucial role in the studies on layer successions in lithostratigraphic sections with the application of
stochastic model of depositional processes represented by the Markov chain is played by correct estimation of the
matrix of transition numbers between lithofacies expected in a random sequence. Methods known from the
literature are iteration procedures, which do not ensure quick, general solution. Hence, we propose a universal
method based upon the Monte Carlo simulation technique. This method enables the researcher to estimate
precisely and reliably the expected matrix of facies transitions.
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INTRODUCTION

Studies on layer successions in lithostratigraphic sec-
tions with the stochastic model of depositional process rep-
resented as discrete Markov process (Markov chain) have
quite a long history. The early publications appeared in the
1960s (see Vistelius & Faas, 1965; Vistelius & Feygelson,
1965; Carr et al., 1966; Krumbein, 1967; Potter & Blakely,
1967, 1968). The following years were devoted to intensive
methodological studies, which enabled the researchers to
recognize the specific character of geological applications
of the Markov chains and to develop methods of correct in-
terpretation of calculated results. Recently, the Markov
chains are regarded as almost a standard tool of sedimento-
logical analysis but still many publications appear, whose
authors do not fully understand the applied mathematical
methods and, thus, their conclusions are not fully correct.
Therefore, it seems reasonable to present once again the
principles of Markov model applications to the analysis of
lithostratigraphic successions.

In order to test the lithostratigraphic section with the
Markov chains, it must be transformed into a sequence
Wiy, k=1,2, ..., N— 1, of observed lithological varietes
(lithofacies) L1, Lo, ..., Lm. Two methods of transformation
are used: recording the succeeding layers or recording the
lithofacies distinguished at equal distances within the stud-
ied section. However, each metod has some limitations: in
the former method information is lost on thicknesses of the

recorded layers, in the latter one ambigous information ap-
pears due to the lack of precise criteria for selection of dis-
tances between the recorded lithofacies. The latter problem
seems to be more serious (probably because the thickness
analysis can be easily run with other methods); hence, the
researches prefer rather the direct recording of the se-
quences of lithological varieties.

The main goal of the analysis of layer successions in
lithostratigraphic sections is the recognition whether depo-
sitional process recorded in the section is random or
whether any regularities are observed, expressed by pre-
ferred occurrence of some successions of lithofacies. Direct
recognition of such preferences is quite easy, as computer
techniques enable us to search quickly even very long litho-
stratigraphic sections. Unfortunately, the results of such
studies cannot be sensibly interpreted due to the lack of rele-
vant statistical methods.

The useful alternatives are methods resulting from the
Markov chains theory. Although these methods cannot an-
swer all questions interesting to a geologist, there exists an
adequate theoretical basis which enables one to solve the
most important problem, i.e., the randomness of a given
succession, as the rejection of randomness hypothesis justi-
fies the undertaking of further, more specialized sedimento-
logical studies.
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The succession of elements in sequence {W}, which
represents the succession of layers in the analysed lithostra-
tigraphic section can be expressed as a square matrix:
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where each element fj; is equal to the number of events in
the sequence {Wk}, and Wy = Lj and Wi+1 = Lj; more pre-
cisely, it is equal to the number of transitions of lithofacies
Li into lithofacies L;. In general, all values fjj can be higher
than 0 but, if during the recording of rocks in a given section
only the succeeding lithological varieties are recorded, the
transitions Li — L (i.e., between two following, lithologi-
cally identical layers) will become forbidden by definition
and the tally matrix will evolve into:
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It must be emphasized that this case is essentially differ-
ent from that, in which 0 values appear in the matrix F as an
empirical fact resulting from the lack of relevant transitions
in the studied succession.

If a lithostratigraphic section recorded in the sequence
{Wy} is of random character, the appearance of any litho-
facies L; (W) = L) at any position k does not depend on un-
derlying lithofacies located at positions k — 1, k — 2, efc.
Therefore, the process which generated the sequence { Wy}
(i.e. sedimentation) does not “remember” its history. If the
lithostratigraphic section is described with the matrix (2),
such defined randomness is impossible: the process must
“remember” the previous layer in order to prevent the repe-
tition of the same lithofacies in the following layer. Hence,
such a case is called ’quasi-randomness”™: if Wy # Wy,
probabilities of the occurrence of all other lithofacies at po-
sition k are equal.

Discrete processes endowed with “memory” extended
back up to g steps are called the g-order Markov chains. If
we assume that fi; = 0, these are the so-called “embedded
chains” (Krumbein & Dacey, 1969). In practice (at least in
sedimentological practice), the first-order chains are in use.
Hence, the following considerations will be limited to such
chains only.

fmj -0

RANDOMNESS TEST
OF A LITHOSTRATIGRAPHIC SECTION

The idea of statistical verification of randomness or
quasi-randomness hypotheses of a sequence { Wy} versus al-
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ternative hypothesis that the studied sequence represents the
first-order Markov chain is very simple. If the null-hypothe-
sis is valid, the matrix of expected facies transitions E
should be calculated and compared with the matrix of ob-
served transitions F. If the differences between both matri-
ces are significant, the rejection of null-hypothesis is sug-
gested. Hence, the crucial problem is the calculation of ma-
trix E and the selection of proper test statistics.

The problems is well-known from the non-embedded
chains (see e.g., Anderson & Goodman, 1957). The ele-
ments of matrix E are given with the following formulae:
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where
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and where the significance of difference between the matri-
ces F and E can be verified with the statistics:
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which has the asymptotic distribution X2 with (m — l)2 de-
grees of freedom.

A more complicated problem arises when one considers
successions described with the matrix (2), which have zero
values along the main diagonal. In such a case, formula (3)
is not applicable because it treats these elements equally
with the others. Potter and Blakely (1968), who first paid at-
tention to this problem and its significance in geological ap-
plications, simply proposed that zero elements of the matnx
can be neglected. Consequently, the calculated value X
may represent the random variable of distribution x with
(m — 1)" — m degrees of freedom. Unfortunately, this con-
cept is an oversimplification — after automatic removal of m
elements from the matrix values e;; will generally be under—
estimated; thus, we cannot expect that the statistics X° will
meet the postulated distribution x

Read (1969) and Gingerich (1969) in their independ-
ently run studies attempted to overcome this weak point.
According to these authors, elements of matrix E should be
determined from the formula:

P : )

which guarantees the identical sums of rows in matrices F
and E (although it does not guarantee the identity of col-
umns sums). The calculated X? statistics should reveal the
asymptotic d1str1but1on X with the degrees of freedom cal-
culated as (m — l) — m (after Read, 1969) or as m(m — 2)
(after Gingerich, 1969).

Unfortunately, also this concept is incorrect, as clearly
demonstrated by Powers and Easterling (1982). Moreover,
these authors defined the clue of the problem, i.e., the lithos-
tratigraphic sections containing the “forbidden” transitions
of the same facies varieties are not independent by defini-
tion. In such cases the total “lack of memory” of deposi-
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tional process does not occur. As a solution, Powers and
Easterling (1982) applied the idea of quasi-independence of
qualitative variables developed by Goodman (1968) and
tested it with contigency tables. In such an attempt, the ele-
ments of matrix E are given by general formula:
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where values a; and b; are determined with relevant itera-
tions.

Let m represent the number of rows/columns in the ma-
trix of transitions frequency, n;+ be the sum of i row, n+; be
the sum of j column and € be the required accuracy of itera-
tion. Thus:
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Iterations are run until the following condition is satis-
fied:
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Another estimation method of expected numbers of tran-
sitions was presented by Davis (2002). In this procedure, the
studied lithostratigraphic succession is treated as a “cen-
sored” sample of a section, in which transitions between
identical lithofacies are permitted and the matrix F for this
sample differs from the observed matrix only with the ele-
ments located along the main diagonal. Under such assump-
tion elements of matrix E can be estimated with iteration.

If m is the number of rows/columns in the matrix of
transition frequency, fj; is an element of this matrix, L is the
preset initial value and / is the required accuracy of itera-
tion, then:
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Finally, if the following condition is met:
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Both the estimation methods of elements of matrix £
are based upon iteration algorithms, the convergence of
which has not been tested. Thus, the danger exists that in a
particular case results of calculations will be unsatisfactory.
The solution lies in the application of well-known Monte
Carlo method, which enables the researcher to estimate di-
rectly the required values with the simulation of random
process of sedimentation.

Let us assume that the studied lithostratigraphic section
{Wi} includes N layers, from which n; represents lithofa-
cies L1, np represents lithofacies Lo, efc. If we randomly se-
lect layers in this section (having in mind that the succeed-
ing layers cannot be lithologically identical) we will gener-
ate a new succession (’section”), which will meet the re-
quirement of quasi-independence. If we generate a large
number (e.g., 1,000) of such sections we can calculate for
each the matrix of the numbers of facies transitions. After
averaging the matrices, we will obtain the estimation of the
expected numbers of facies transitions e;;.

The advantages of the proposed method are: the ab-
sence of any initial assumptions (except for repeatability of
lithofacial varieties) and the independence of the results on
iteration procedures. Calculations can be run with any avail-
able generator of pseudo-random numbers, e.g., that operat-
ing in commonly used Excel software.

It is obvious that, despite selected estimation method of
the elements of matrix E, the final step of randomness test
of deposition process recordered in a lithostratigraphic sec-
tion is the calculation of X? statistics (see formula 6).

COMPARISON OF ESTIMATION
METHODS OF EXPECTED NUMBERS
OF FACIES TRANSITIONS

Below, an application is presented of estimation meth-
ods of the expected numbers of facies transitions. True data
originate from the HEBCH-1 succession, which represents
the paralic series of the Upper Silesian Coal Basin. The suc-
cession includes 126 layers of eight lithological varieties:
claystones (SH — 47 layers), coaly claystones and coaly
shales (CS — 3 layers), coal (COAL — 33 layers), fine-
grained sandstones (SF — 20 layers), mudstones (MU — 17
layers), medium-grained sandstones (SM — 2 layers), coarse-
grained sandstones (SC — 1 layer) and heteroliths, i.e. rocks
composed of the sets of clay-sandstone-mudstone laminae
(HE — 3 layers). The observed matrix F of transitions be-
tween these facies varieties is shown below.
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SH CS |COAL| SF MU | SM SC HE Z
SH 0 0 23 11 10 1 1 0 46
CS 2 0 1 0 0 0 0 0 3
COAL| 26 3 0 4 0 0 0 0 33
SF 9 0 4 0 6 0 0 1 20
MU 9 0 3 3 0 0 0 2 17
SM 1 0 0 1 0 0 0 0 2
SC 0 0 0 0 0 1 0 0 1
HE 0 0 2 0 1 0 0 0 3
z 47 3 33 19 17 2 1 3 125

Below, matrices are shown of the expected numbers of
transitions in a quasi-random column calculated with the
three methods:

Powers-Easterling method

SH CS
SH | 0.00 | 1.52

COAL| SF MU | SM SC HE z
21.31{10.75| 9.40 | 1.00 | 0.50 | 1.52

46.00

CS 1.53 | 0.00 | 0.70 | 0.35 | 0.31 | 0.03 | 0.02 | 0.05 | 2.99

COAL| 21.54| 0.70 | 0.00 | 4.99 | 436 | 0.47 | 0.23 | 0.70 | 32.99
SF 1 11.37| 037 | 522 | 0.00 | 2.30 | 0.25 | 0.12 | 0.37 | 20.00
MU | 9.51 | 0.31 | 436 | 220 | 0.00 | 0.21 | 0.10 | 0.31 | 17.00

SM | 1.02 | 0.03 | 0.47 | 0.24 | 0.21 | 0.00 | 0.01 | 0.03 | 2.01
SC | 0.50 | 0.02 | 0.23 | 0.12 | 0.10 | 0.01 | 0.00 | 0.02 | 1.00
HE | 1.53 | 0.05 | 0.70 | 0.35 | 0.31 | 0.03 | 0.02 | 0.00 | 2.99
Z | 47.00| 3.00

32.99 | 19.00 | 16.99 | 2.00 | 1.00 | 3.00 |124.98

Davis method

SH CS
SH | 0.00 | 1.44

COAL| SF MU | SM SC HE z
21.16

11.06 | 9.14 | 0.96 | 0.48 | 1.44 | 45.68

CS 1.44 | 0.00 | 0.72 | 0.38 | 0.31 | 0.03 | 0.02 | 0.05 | 2.95

COAL| 21.16 | 0.72 | 0.00 | 5.53 | 4.57 | 0.48 | 0.24 | 0.72 | 33.42

SF | 11.06 | 0.38 | 5.53 | 0.00 | 2.39 | 0.25 | 0.13 | 0.38 | 20.12

MU | 9.14 | 0.31 | 457 | 239 | 0.00 | 0.21 | 0.10 | 0.31 |17.03
SM | 0.96 | 0.03 | 0.48 | 0.25 | 0.21 | 0.00 | 0.01 | 0.03 | 1.97
SC | 048 | 0.02 | 0.24 | 0.13 | 0.10 | 0.01 | 0.00 | 0.02 | 1.00
HE | 1.44 | 0.05 | 0.72 | 0.38 | 0.31 | 0.03 | 0.02 | 0.00 | 2.95
Z | 4568 2.95

33.42120.12 1 17.03 | 1.97 | 1.00 | 2.95 |125.12

Monte Carlo method (for 1000 repetitions)
SH | cs

COAL| SF MU | SM SC HE z

SH | 0.00 | 1.56 |21.6810.49 | 9.17 | 1.01 | 0.63 | 1.46 | 46.00

CS 1.45 | 0.00 | 0.68 | 0.41 | 0.36 | 0.03 | 0.02 | 0.05 | 3.00

COAL| 2145 | 0.67 | 0.00 | 5.11 | 441 | 048 | 0.17 | 0.72 | 33.01
SF | 11.51| 0.38 | 5.06 | 0.00 | 2.35 | 0.24 | 0.09 | 0.38 | 20.01
MU | 9.62 | 0.30 | 424 | 222 | 0.00 | 0.20 | 0.08 | 0.33 | 16.99

SM | 0.95 | 0.03 | 0.47 | 0.26 | 0.24 | 0.00 | 0.01 | 0.04 | 2.00
SC | 0.54 | 0.01 | 0.17 | 0.13 | 0.13 | 0.01 | 0.00 | 0.01 | 1.00
HE | 1.48 | 0.05 | 0.70 | 0.38 | 0.34 | 0.03 | 0.01 | 0.00 | 2.99
X | 47.00| 3.00

33.00 | 19.00 | 17.00 | 2.00 | 1.01 | 2.99 |125.00
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SUMMARY

The examples presented above demonstrate that all
three applied methods produce almost identical results;
hence, all provide the same conclusions after the random-
ness test was calculated. It must be emphasized, however,
that the Davis method produced perfectly symmetric matrix
of transition numbers, which means that this method ne-
glects the difference in sums of rows and columns for the
first and last element. This difference can be important for
short lithostratigraphic sections, which, unfortunately, are
quite common in geological practice. For such sections, a
much better solution is the application of the Powers-
Easterling or Monte Carlo methods. However, for long
wells and when the Monte Carlo method is used, the length
of the studied sequence is unimportant.

The problem of estimation of expected values is so crit-
ical because sedimentological conclusions are based upon
differences between expected and observed numbers of fa-
cies transitions in the studied lithostratigraphic sections.
Hence, incorrect estimations of expected numbers of transi-
tions will inevitably lead to erroneous differences and, con-
sequently, will generate wrong genetic conclusions.
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