ON THE NEW WILDFLYSCH-TO-FLYSCH, BLUESCHIST-RICH LOWER VISEAN SUCCESSION OF THE WESTERN SUDETES (SW POLAND)

Bolesław WAJSPRYCH & Stanisław ACHRAMOWICZ

Abstract: Field and laboratory works realized in last years allowed us to redefine one of the lithotectonic units of the western Sudetes, till now considered to be composed of Cambrian to Lower Carboniferous, stratigraphically coherent, volcano-sedimentary succession, as the Lower Carboniferous, probably lower Visean, wildflysch-to-flysch succession. This unit forms the westernmost part of the Kaczawa Complex and is situated at the boundary zone between the Kaczawa Mts. (Polish Sudetes) and the Görlinger Schiefergebirge (Germany) or – at a larger scale – between the Sudetes and Lugian tectonostratigraphic zones of the Variscan orogen. Petrographical studies of rocks sampled from the larger allochthonous bodies (olistolithes and slide-sheets) of the wildflysch sequence have revealed some peculiar features of the lithic composition of this succession. They consist in the presence of: (1) - unmetamorphosed and metamorphosed volcanites with a distinct HP-overprint, characteristic of supra-subduction zones, gabbro-type plutonites, and relatively numerous detrital chromite grains indicating the occurrence of ophiolite ultramafics in the source area; and (2) - large block(s) of rock composed of quartz (almost 100% SiO₂), previously interpreted as Palaeozoic quartz vein, now documented by the authors to be totally silicified primary evaporites, composed of gypsum (selenite), anhydrite and salt. The last finding would be of special significance as the first strong evidence of evaporites within the Variscan orogenic complex in Europe, if further studies confirm proposed here tectonic position of the silicified evaporites.

General lithic composition of the Jędrzychowice/Ludwigsdorf wildflysch detrital material is characterised by the presence of such lithologies, as: black and gray-to-green cherts, black shale mudstones and cherts, turbidite-siliciclastics, carbonates (both bioclastic and diagenetic), basic and acid, unmetamorphosed and epi-to-HP-metamorphosed volcanites, and gabbros and ultrabasites (the latter noted only by detrital chromites). Moreover, the siliciclastic material of the olistostrome matrix discloses the presence of acid magmatic (granites) and high-grade metamorphics of gneiss-to-mica-schist type in the source areas. Such a composition of detrital material clearly reflects a typical tectonic mélange as the source terrane for the wildflysch deposit. It would mean that the Jędrzychowice/Ludwigsdorf wildflysch should be considered as the next, strong and unequivocal signal of large-scale tectonic mélange stage in a tectonic/geodynamic evolution of the Central European Palaeozoic orogenic system.

Key words: wildflysch, olistostromes, blueschists, silicified evaporites, Variscan orogen, Lugo-Sudeticum.

INTRODUCTION

The aim of this paper is to present a new, large-scale Variscan wildflysch-to-flysch rock-unit, and to situate it within the tectono-stratigraphic structure of the Sudetes part of the Central European Variscan orogen (further referred to as CEVO). Such a limited purpose must be preliminary accepted, even if some peculiar exotic wildflysch lithologies, like HP/LT metamorphosed basalts and (silicified) evaporites can be the basis to propose the new tectonic/geodynamic reconstructions. However, the present level of recognition of this mélange-related, evaporite-bearing wildflysch and its tectono-stratigraphic position in the structure of CEVO, is still not sufficient to undertake such reconstructions.

A rock unit dealt with in this paper, proposed here to be named as the Jędrzychowice rock-unit, is situated in the westernmost Sudetes, in the Zgorzelec/Görlitz region of the Polish/German frontier zone. It crops out in a small area in the vicinity of the Jędrzychowice village, some hundred metres to the east of the Nysa Łużycka/Lausitzer Neisse frontier river (Fig.1). Geologically, it is situated (Fig. 2) be-
Fig. 1. Tectonic setting of the Jędrzychowice rock-unit in a tectono-stratigraphic structure of the Central European orogen (A), and in the West Sudetes region (B) (after Frydrychowicz & Frydrychowicz, 1959; Geological Map Lausitz-Jizera-Karkonosze, 2001)

According to one of the oldest geological map of the region (Frydrychowicz & Frydrychowicz, 1957), the Jędrzychowice rock-unit forms a part of the rise of the basement rocks, isolated among the Cenozoic terrestrial deposits (Fig.1). From the south it is tectonically juxtaposed by Upper Proterozoic siliciclastics of the Lausitzer Graywacke Formation, interpreted to be deposited in a foreland basin of the Cadomian orogen (Kemnitz & Budzinski, 1994; and references therein). To the north, the Jędrzychowice rock-unit is unformably overlain by Lower Permian (or the Upper Carboniferous to Lower Permian, according to Milewicz, 1972) sedimentary and volcano-sedimentary terrestrial successions. The Jędrzychowice rock-unit itself is drawn on the commented map as a succession composed of carbonates, quartz-sericite fyllites, diabases, and siliceous shales of Cambrian to Silurian age. According to newer biostratigraphic data (see Chorowska & Sawicki, 1975, and references therein; Chorowska et al., 1981), the Western Kaczawa Mts. rock complex, including the Jędrzychowice rock-unit, has appeared to be of Cambrian to Early Carboniferous in age. Finally, recently published Geological Map of the Lausitz-Jizera-Karkonosze (Kozdrój et al., 2001) presents
the area of the Jędrzychowice rock-unit as dominated by Lower Cambrian carbonates (mostly dolomites), shales, and mafic volcanics and pyroclastics, and Lower Carboniferous undivided graywackes, sandstones, shales (partly fyllites), limestones, and conglomerates with characteristic Kiesel­schiefer-Homstein Conglomerate.

In the present paper, the Jędrzychowice rock-unit, till now unequivocally interpreted to be the Lower-Middle Palaeozoic, coherent stratigraphic volcano-sedimentary succession, is redefined to be the wildflysch sequence of Early Carboniferous age. Detailed mapping and some structural observations suggest that the flysch sediments rest on the wildflysch deposits. A distinctly normal position of the flysch beds confirms the described unit as the fining upwards, wildflysch to flysch succession. Both the base and cover of this succession have not been recognised till now.

TECTONOOSTRATIGRAPHIC SETTINGs

The Jędrzychowice rock-unit generally belongs to the westernmost part of the Sudetes and, more precisely, it forms the westernmost part of the Kaczawa Mts. unit. The Sudetes is one of tectonostratigraphic units of the CEVO. According to traditional, large-scale tectonostratigraphic zonation by Kossmat (1927), subsequently modified but still commonly accepted (for review compare: Franke, 1989; Franke & Zelaźniewicz, 2002), the CEVO is composed of the Moldanubian, Saxothuringian and Rhenohercynian/Avalonian zones/terrains, where the latter two ones are separated by a narrow crystalline belt, the Mid-German Crystalline Rise. The Sudetes, in the frame of this zonation, are marked as the eastern part of the Saxothuringian zone. Suess (1926), taking into account some differences in litho-
tectono-stratigraphic composition of both the units, has proposed to subdivide the Saxothuringian zone into the Saxothuringicum sensu stricto and the Lugicum (Fig. 1A; for discussion see Hirschmann, 1988). The Sudetes, according to this proposition, form the eastern part of the Lugicum. Paszkowski et al. (1990) proposed the term Lugo-Sudeticum as better expressing the differences in litho-tectono-stratigraphic structure of both the parts of the Lugicum sensu Suess (1926). The Jędrzychowice rock-unit is situated exactly at the boundary between Lugicum and Sudeticum (Fig. 1A).

The Sudetes appear to be a composed mosaic of fault-bounded geological units of different tectono-stratigraphic and metamorphic histories. One of largest units is the Kaczawa Mts. unit which forms a northwestern part of the Sudetes. It is, in general, composed of low-to-greenschist-grade, HP-containing, metamorphosed, strongly deformed, and externally differentiated in its lithological and stratigraphic composition volcano-sedimentary, Cambrian (or Ordovician/Silurian, according to Skowronek & Steffahn, 2000) to Lower Carboniferous (Chorowska, 1978) rock complex (Baranowski et al., 1990, and references therein).

The Kaczawa rock-complex (Kaczawa Complex, Kaczawa Metamorphic Complex – as proposed in some recent publications (Collins et al., 2000; Koždrój et al., 2001; respectively) can be subdivided into three main parts, strongly differentiated in their litho-tectono-stratigraphic composition: the northern, southern and western ones (Baranowski et al., 1990). A distinct feature of the northern part is the presence of Upper Devonian–Lower Carboniferous, olistostrome-type mélangé rock-sets, composed of slab-like and lensoidal blocks of metavolcanites, sandstones, shales, and metacherts hosted within highly deformed, but weakly metamorphosed (up to greenschist facies) mélangé matrix (Haydukiewicz, 1987). Some metavolcanic inclusions locally preserve glauconephane overprinted by actinolite (Kryza, 1993). The southern part of the Kaczawa Complex (Southern Kaczawa Complex) is interpreted by Collins et al. (2000) as a set of coherent thrust slices of Cambrian–Ordovician acid and basic volcanites of within-plate to MORB geochemistry (Fumes et al., 1994), and carbonates, mudstones and sandstones. This rock-assemblage consists of glauconephane-bearing blueschists (ca. 10 kbar, 300–400 °C), overprinted by lower greenschist-facies (<6–8 kbar, 350–400 °C; Kryza et al., 1990). The mélanges occur in this part of the Kaczawa complex too, but they are restricted to the outcrops that overlie the coherent thrust sheets and highly deformed, mud-rich lithologies between the thrust sheets (Collins et al., 2000).

The Western Kaczawa Complex is fundamentally different. It is generally composed of the Upper Ordovician to Lower Carboniferous (Chorowska et al., 1981), low-grade to unmetamorphosed, weakly deformed succession, dominated by pelitic shaly rocks, which is comprising the intercalations of black, often siliceous, radiolarians-bearing mudstones with phosphorite concretions, radiolarites, fine-grained siliciclastics, carbonates (mostly Upper Devonian; Chorowska & Ozonkowa, 1975), and both the acid (older, probably Ordovician) and basic (Silurian and Devonian) volcanites and their tuffs (Chorowska et al., 1981). The Jędrzychowice/Ludwigsdorf wildflysch to flysch succession builds up the westernmost part of such defined Western Kaczawa unit.

GENERAL CHARACTERISTICS OF THE SUCCESSION

LITHOLOGY, PETROGRAPHY, AND CORRELATIONS OF EXOTIC MATERIAL

The age of the majority of lithologies noted within the Jędrzychowice/Ludwigsdorf sequence can be estimated now mostly on the base of lithological correlations with similar, often almost identical and biostratigraphically proved lithologies of the adjoining rock units. The western Kaczawa Mts. (Chorowska et al., 1981) and the Görliitzer Schiefergebirge (Schwarzbach, 1936; Brause, 1969; Brause & Hirschmann, 1964) rock complexes, as well as other Variscan, well recognised wildflysch-type successions of the Saxothuringicum (Linnemann & Schauer, 1999, and references therein) and the Sudetes (Wajsprych, 1978, 1986, 1995; Haydukiewicz, 1987; Baranowski et al., 1990), have been used as a reference system for the presented below stratigraphy of the exotic rock-material.

A first attempt to the question of age of the rocks of the Jędrzychowice unit has been presented by Berezowski & Chorowska (1968). According to these authors, the rock-succession exposed in a digged graben, is represented by strongly tectonised but stratigraphically coherent volcano-sedimentary Lower Cambrian to Lower Carboniferous succession, dipping generally to the south. It was interpreted as dominated by the Upper Devonian sedimentary and volcanic rocks in the northern part of the graben, and by the Lower Carboniferous monotonous silstone-sandstone series in the southern part. As the Lower Cambrian, Frydrychowicz & Frydrychowicz (1958) and Berezowski & Chorowska (1968) describe the light-gray, fine grained crystalline massive limestones, found in the northern part of the Jędrzychowice unit (the Biesi Kamięń hill area – Fig. 2). This limestone looks to be identical to that of the limestone-phylite series from Ludwigsdorf, defined by Schwarzbach (1934) as Lower Cambrian. According to K. Pietsch (vide Berezowski & Chorowska, 1966), the carbonates of the Biesi Kamięń hill area are Devonian in age. The Upper Devonian in the "graben sequence" is represented by basic volcanites (diabases), red, reddish-violet and gray-to-green mudstones and clay-siliceous shales, dark to black shale mudstones, fine-grained quartzites, and dark, brownish to black carbonates (Berezowski & Chorowska, 1968). Some of the coloured shales these authors correlate with those known as the "shales from Sprözitz/Görliitzer Schiefergebirge, where the Upper Devonian conodonts have been found by Freyer (1965). The reddish-violet shales of the "graben sequence", Berezowski & Chorowska (1968) compare to the shales known from the Halbensdorf borehole which are biostratigraphically proved to be also of Late Devonian age (Freyer, 1965). In consequence, the diabase tuffites found in the "graben section" as intercalations within
reddish-violet shales, Berezowski and Chorowska (1968) interpreted as resulted from the Late Devonian synsedimentary volcanic activity. Such a conclusion finds its confirmation in the Emmerichswalde region/Görlitzer Schiefergebirge, where the diabases form synsedimentary intercalations within the Upper Devonian Sproitz series (Brause & Hirschmann, 1964). Consequently, all the other bed-like, up to several meters thick bodies of diabases, found in the graben, have been interpreted by Berezowski and Chorowska (1968) as being of Late Devonian age. Some brownish-gray, fine-grained to pelitic carbonates from the northern part of the graben have also been classified by Berezowski & Chorowska (1968) as Upper Devonian rocks, since they are identical to the Reichstein’s (1961, vide Berezowski & Chorowska, 1968) Upper Devonian Kunnersdorf limestone from the central part of the Görlitzer Schiefergebirge.

The results of both field and microscopic studies have allowed the present authors to extend a list of the lithologies with some peculiar, till now not recognised ones, as cherts, blueschists, andesite volcanoclastics and lavas, and silicified evaporites.

The class of cherts is represented by gray, grayish-green and beige cherts, which frequently contain numerous radiolarians (Fig. 3A). They are commonly found both as the clasts and the bigger blocks within the olistosthrome deposits, as well as characteristic, grain to granule in size, constituents of the flysch siliciclastics. The cherts are generally unmetamorphosed and do not disclose any trace of penetrative deformation. As far as their age is concerned, (biostratigraphic examination is in progress now), their distinct similarity to cherts well known from many Upper Devonian, deep-water successions of the Saxothuringian and the Sudetes realms, strongly supports the conclusion on Late Devonian age of the cherts in question.

The next characteristic and often observed lithology of the Jędrzychowice/Ludwigsdorf wildflysch is dark-gray to black, gently laminated to massive mudstones. A peculiar feature of this lithology is the radiolarian fauna, found in some specimens as singular individuals, irregularly dispersed in the rock mass. Meso- and micro-scale observations have shown this rock to be the most abundant exotic lithology of the olistosthrome deposits, represented as angular clasts of the grain- to boulder-size. Also the matrix of the olistosthrome deposits seems to be constructed mostly of sheared dark-gray and black mudstone. The clasts of dark-gray to black, also radiolarians-containing cherts (Fig. 3B) and fine-grained, quartz-rich, dark-gray siliciclastics, commonly found among the relatively fine debris of the olistosthrome clastics, belong probably to the same mudstone association. In some thin sections, the coarse-grained, often limonitised, detrital material of siderite composition has been found in a close spatial relationship with the black mudstone detritus. Concluding, the above reconstructed sedimentary, mudstone-dominated exotic association indicates a sequence composed of black, radiolarians-bearing mudstone, containing siderite concretions, and rarely intercalated with black to gray radiolarian cherts and thicker inserts of gray-to-black, fine-grained, quartz-rich, turbidite siliciclastics as an important lithostratigraphic member of the source rock complex.

Such a reconstructed sequence can be lithologically correlated with the middle Tournaissian (lower cdll), generally black shale sequence, typical of the Saxothuringian, Sudetes and Rhenohercynian realms, interpreted to have originated due to well documented global eustatic transgression of the Lower cremlula – isosticha – Upper cremlula Zones in age (for summary see Herbig, 1993; Becker, 1992). For example, the Gologlowy Formation (Wajsprych, 1986) of the Bardo Mt. rock complex in the Central Sudetes, which is biostratigraphically proved to be of middle Tournaissian age (Haydukiewicz, 1981; Chorowska & Radlicz, 1992), contains all the lithological members distinguished above. It is composed of black mudstone, rarely interbedded with thin-beded cherts, some levels of relatively big (up to 12 cm in diameter), usually limonitised, siderite concretions, and thicker inserts of dark-gray, thin-beded and fine-grained, quartz and detrital mica-rich, often graded turbidite siliciclastics.

Another important group of the exotics are the volcanics. The diabases described by the former authors (Frydrychowich & Frydrychowicz, 1959; Berezowski & Chorowska, 1968) have appeared to be a strongly diversified set of basic to intermediate rocks represented by dolerites and basalts, accompanied by andesitic lavas and their volcanoclastics. It is characteristic that basic volcanogenic rocks are mostly highly metamorphosed (blueschists) in contrast to more acid ones, which recorded very low grade metamorphism or none.
Fig. 4. Homogenous structure of jadeite-bearing blueschist ex­otic blocks within the Jędrzychowice/Ludwigsdorf wildflysch. The jadeite blasts are spatially connected with chlorite and seladonite (indistinguishable here) and overprinting albite grains. The fan-like (A) and the rosette-like (B) arrangements of jadeite are ob­served. Parallel polars

The blueschist blocks are the dominating constituent of a group of volcanic exotics of the Jędrzychowice/Ludwigsdorf wildflysch. The biggest (up to 250 m in diameter) allochthonous slabs found in the northern part of the Jędrzychowice rock-unit are composed of blueschist basalt. In the prevailing cases, the blueschist basalts are fresh and their texture is massive and never showing any traces of dynamic recrystallisation. A well preserved magmatic structure of former dolerites is evidenced by ophitic matrix embedding bigger (1–7 mm in diameter) igneous clinopyroxene xenocrysts. In some of the examined metabasite blocks (samples Z224, Z225, Z300), igneous amphiboles of peculiar Fe-gedenite composition have been found. The grains of igneous pyroxene, usually altered, are zoned. Their cores are formed of brown Ti-augite (0.38<Ti<0.61 atoms per formula unit – a.p.f.u.) and the rims are composed of pale-green sodic pyroxene (Jd13Aug67Aeg20). The metamorphic pyroxene is pure jadeite, which concordantly overgrows the phenocrysts of igneous pyroxene or is forming individual crystals up to 1.5 cm long, arranged in the form of fan-like aggregates of up to 1.5 cm long crystals (Fig. 4A) or the rosettes (Fig. 4B). Often, jadeite forms a moss-like aggregates, located at rim of the albite laths. Finally, three different, garnet-free and albite-rich assemblages have been recognised among the till now examined blueschist metabasalts: (1) Fe-glaucophane – stilpnomelane – phengite (Si > 3.75 apfu) – chlorite; (2) jadeite – epidote – phengite – chlorite, and (3) jadeite – glaucophane – epidote – phengite – chlorite. The assem­blage (1) indicates the lower pressure overprint (max. 6–7 kbar at 300°C), while the (2) and (3) assemblages document distinctly higher pressure conditions (> 10 kbar at 350°C).

The exotic andesite volcanogenic rocks are represented by volcanoclastics and lavas. It should be emphasized that andesites are typical volcanics of supra-subduction zones. The volcanoclastics occur in subordinate amounts. They are composed mostly of angular fragments of structurally differen­tiated (e.g., fluidal, ophitic or vascular) lavas, and al­tered volcanic glasses (Fig 5A). The fluidal lavas contain plagioclase (An = 28–36 mol %) phenocrysts. The lava-type
andesite volcanites are represented by massive and pillow lavas. The ophitic-vascular structure, with variable number of vesicles, is typical of massive lavas, found there in the field mostly as large blocks. Pillow lavas, met in the field as smaller blocks and angular, pebble-sized debris, are usually associated with detrital material of black-shale type described above. Fine-crystalline ophitic structure and numerous vesicles are characteristic feature of these pillow lavas (Fig. 5B). The spherical and ovaloidal vesicles, 5–10 mm in diameter, usually more or less homogenously distributed, are filled with spherulitic silica or chlorite + prehnite + quartz ± zeolites ± calcite aggregates. Locally, fluidal structure within the matrix has been observed. Moreover, the vesicles are elongated and orientated along a fluidal lamina, what is typical of lateral zones of pillows.

The mineral paragenesis: chlorite + zeolite + prehnite + quartz ± calcite, established for the andesite lavas, suggests a very low grade alteration at the pressure < 1 kbar and temperature < 200°C, what does not exceed the degree of alteration of the whole wildflysch succession.

The gabbroic rock, recognised by the authors as a large mapable rock-body (Fig. 2), represents the next new, surely allochthonous component of the described wildflysch deposit. The rock shows a coarse-grained cumulate structure, expressed by large and relatively fresh plagioclase crystals and idiomorphic Fe-Mg minerals (Fig. 6). The latter are completely altered to chlorite, serpentine, talc, sphene, calcite, and opaque minerals, what indicates serpentinisation as the alteration mechanism.

Numerous detrital chromite grains, found within the flysch siliciclastics, disclose also a high share of the ophitic-type ultramafic rocks within the source rock complex. The lack of any direct data makes the question of age of all the igneous exotics described above as related to the model solutions. Since, this question will be undertaken in the final chapter of this paper.

Another exotic component of the allochthonous rock-assemblage of the Jędrzychowice/Ludwigsdorf wildflysch is a rock composed in almost 100% of quartz and interpreted by the authors as totally silicified evaporites. Till now, this rock has commonly been described as a quartz vein (Frydrychowicz & Frydrychowicz, 1958; Śliwa, 1967; Milewicz et al., 1979). However, Śliwa (1967), having established some peculiar features of petrographic composition of this quartz-rock, like the presence of the "limonite-chaledone, losenge and square in shape, post-magnetite pseudomorphs... in some parts of the rock...", has underlined its individuality when compared with other large quartz veins known from the Sudetes. This quartz rock forms a large (more than 350 m in diameter), slab-like body, situated in north part of the Jędrzychowice rock-unit. It probably forms an allochthonous body, though this question needs further studies. The rock is rich in silica pseudomorphs of idiomorphic crystals of various evaporite minerals which are visible under parallel nicols only (Fig. 7A). The shapes of silica pseudomorphs and the common presence of the length-slow chalcedony are, following Folk & Pittman’s (1971) opinion, the evidence of vanished evaporites. These diagnostic features were used by the present authors to consider the Biesi Ka-

![Fig. 6. Exotic of the gabbroic rock. Its finer-crystalline parts display cumulative structure of amphibole and pyroxene with interstitial plagioclase. Crossed polars](image)
Fig. 7. Microphotographs illustrating the structure of exotic silicified evaporites from the Jędrzychowice/Ludwigsdorf wildflysch: A – crystalline structure of primary evaporitic rock. Note idiomorphic shapes of silica pseudomorphoses after dolomite and salt minerals. The former outlines of the dolomite and salt crystals are marked by haematite. Parallel polars; Selected crystal of dolomite replaced by silica under parallel (B) and partially crossed polars (C). Before silicification this crystal has undergone a partial dissolution (upper left part of photos B & C). The length-slow chalcedony is visible along the crystal edges.

Carbonates. There are four classes of carbonate material identified within the allochthonous clastic material of the Jędrzychowice-Ludwigsdorf wildflysch: (1) carbonates (dolomites) from the Biesi Kamień hill area which originated due to late/post-diagenetic carbonisation (dolomitization) of primarily siliceous sedimentary rock; (2) –

till now not recognised composition; they are formed of crystals or fragments of druses of the ?evaporite and/or ?dolomite minerals (Fig. 9A, B). For instance, the gypsum crystals as nuclei of gypsum ooids from the Miocene deposits from the Holy Cross Mountains in Central Poland have been described by Kasprzyk (1993).

Summing up, the quartz rock of the Biesi Kamień series, now consisting in almost 100% of quartz, can be interpreted to be, subsequently totally silicified, evaporite deposits. The problem of the age of this evaporite sedimentation will be presented below.

Another large fragment of quartz-rock is exposed in central part of the Jędrzychowice village, about 1 km south of the Biesi Kamień hill (Fig. 2). It forms a slab about 60 – 80 m long and about 6–10 m thick. On the geological map of Frydrychowicz & Frydrychowicz (1959) it is marked also as a large-scale quartz vein. In the present authors’ opinion, this quartz rock also resulted from a total silicification of sedimentary rock series, probably limestone. The nature of this rock protolith, however, is not so distinctly readable as the evaporite nature of the Biesi Kamień quartz-rock protolith is.

Carbonates. There are four classes of carbonate material identified within the allochthonous clastic material of the Jędrzychowice-Ludwigsdorf wildflysch: (1) –

Fig. 8. Microphotograph examples of textures inherited after silicified evaporites from the wildflysch of the Jędrzychowice/Ludwigsdorf sequence: A – the inner part of silicified selenite is composed of homogenous, felt-like silica. The former presence of dolomite crystals included in this selenite is visible as silica pseudomorphoses, rhombic in shape. Parallel analysers; B – spherulitic silica marks former nodular anhydrite. Parallel analysers; C – parallel lamination of silica inherited after the primarily laminated anhydrite. Crossed polars

other diagenetic carbonates probably originated from carbonisation of primary evaporites; (3) – secondary quartz-rock originated by a total silicification of primary, poorly recognisable, in part thin-laminated, probably micritic but unfossiliferous limestones; and (4) – bioclastic, unaltered limestone.

The Biesi Kamięń evaporites are situated in close spatial relationship to the carbonates, still described as the Lower Cambrian dolomites (Kozdrój, 2001; Geological Map, 2001). However, the results of preliminary petrographic studies indicate this rock to be a carbonatised (dolomitised) siliceous shale. Its primary structure is marked by intercalations of gently laminated claystone. The final carbonisation, which has touched ca. 70–85% of the primary rock volume, was preceded by two other, late- to post-diagenetic events: (1) – the early dolomitisation, and (2) – silicification. The early dolomitisation produced small rhombohedral dolomite crystals, irregularly dispersed throughout the siliceous rock-mass. The subsequent silicification has overprinted the siliceous-clayey rock-mass and only partly removed the dolomite crystals, perfectly preserving their original outlines, what resulted in the ghost-structure of the rock. Such transformed rock was subjected to final carbonisation.

It is worth to note that the set of the above established late-to post-diagenetic changes within the described “dolomite” is identical to that found within the Biesi Kamięń quartz rock, where the silicification was also preceded by dolomitisation. It does finally mean a common syn-to-post-diagenetic history of both the lithologies which has developed there in the place of their deposition.

The last of the above distinguished groups is represented by siliciclastic material of flysch deposits. It is composed mostly of quartz, plagioclases, K-feldspars and mica flakes, as well as the aggregates of these minerals, indicating the domination of gneisses, mica schists, and undeformed granitoids in lithological composition of the source complex. Such detrital material, psammite to granule in size, is a prevailing constituent of the grain framework of generally thin-bedded turbidites, which form sedimentary
background for the olistostrome and large olistolith inclusions. Till now, no bigger clasts or boulders of granites, gneisses or mica-schists have been found within the Jędrzychowice/Ludwigsdorf wildflysch-to-flysch succession. The mineral and lithic compositions of detrital siliciclastic material characterized above seem to indicate generally pre-Carboniferous age of gneiss - mica schist complexes, typical of the Saxothuringian and the Sudetes units. In this context, a high contribution of granitic detrital material sounds to be of special interest and demands further investigations.

LITHOTECTONIC COMPOSITION OF THE JĘDRZYCHOWICE UNIT; WILDFLYSCH DEFINITION

The lack of larger exposures makes the surficial relationships among different lithologies and petrographic/petrological and biostratigraphic features of these lithologies, the main way to recognise the wildflysch nature of the studied rock-unit. Our schematic geological map (Fig. 2) presents the Jędrzychowice unit as an archipelago of isolated "islands" of different basement rocks exposed in the "sea" of Recent deposits. The largest of these "islands", concentrated in northern part of the unit, are composed of silicified evaporites, carbonates, siliciclastics, gabbroic rock, and andesite lavas and volcanoclastics (all unmetamorphosed) and basalts altered under the blueschist facies conditions (Fig. 2). Allochthonous position of all these lithologies and chaotic character of their final accumulation are evident. The thin-bedded, mostly fine to medium-grained, silt to pelite material-rich, commonly graded lithic wackes and typical olistostrome deposits, noted in some parts of the unit, represent the background sediments for emplaced large allochthonous bodies.

Some structural features, like a SSW-ward dipping of the flysch and wildflysch bedding, as well as normal grading, observed in some examined flysch outcrops, indicate the rock-succession of the Jędrzychowice unit as a normal one, generally younging to the south. Domination of large allochthonous bodies in the northern part of the unit and dominance of the flysch deposits in the southern part disclose this succession as a fining-upward, wildflysch to flysch succession.

The lower portion of the wildflysch sequence can be interpreted as a rock-assemble composed of large fragments of probably Upper Devonian and lowest Carboniferous, sedimentary and volcano-sedimentary, radiolarian-bearing black mudstone dominated series. It is internally sheared but stratigraphically coherent, gravitationally mixed, with large slabs of exotic and evidently older, blueschist basalts and ophiolite-type rocks. The pebble mudstone-rich olistostrome deposits, containing also large volumes of black mudstone detrital material, as well as black, green or beige cherts, fine-to-medium-grained siliciclastics, are characteristic for the upper part of the wildflysch sequence. The pebble-to-boulder sized clastic material is represented by undeformed and unmetamorphosed volcanites, mostly andesite-type lavas. Such diversified rock-mass forms the background, matrix deposit for large and very large bodies, several tens to 250 m in diameter, of the ophiolite type gabbroic rocks and blueschists.

Siliciclastics typical of flysch sequence form the upper part of the wildflysch sediments. A gradual transition from wildflysch to flysch deposition is noted by the olistostrome-type intercalations within the lower part of flysch and permanent presence of clasts of cherts, typical of the wildflysch deposit within the flysch siliciclastics. The flysch deposit in the recognised part of the succession is composed of quartz-rich lithic wackes, rather thin-bedded but medium-to-coarse-grained, intercalated with siltstone-dominated, fine-grained to pelitic lithologies. Structure of clastic beds is massive to graded.

According to the presently accepted concept (for review see Kozdrić et al., 2001), the Jędrzychowice unit, as a part of the Western Kaczawa complex, is tectonically juxtaposed from the south by the Upper Proterozoic (Cadomian) flysch graywackes. However, some olistostrome intercalations found by the present authors within this Cadomian flysch, seem to introduce some essential questions to this concept. Lithic composition of these olistostrome breccias, which are characterised by presence of pebble to boulder sized clasts of the greenish-gray and black cherts and black mudstones, both containing radiolarians and conodont fauna (unpublished data), are typical of lithic composition of the wildflysch olistostromes. These data led us to conclude about the Early Carboniferous age of - at least - this part of the Upper Proterozoic flysch clastics where the breccia-intercalations have been found.

Summing-up, the Jędrzychowice rock unit is considered to represent the fining upward, flysch-to-flysch succession. As the wildflysch body crosses the Nysa Ludwigsdorfer Neisse river, where the Ludwigsdorf locality is situated, we propose, though still informally, to name the described lithostratigraphic unit as the Jędrzychowice/Ludwigsdorf (wildflysch) sequence.

Such a doubled term may be not suitable in using sounds to be still worth to be proposed. First of all, it is joining the rock complexes divided by frontier-river only. Besides, it is introducing the defined here wildflysch sequence to the geology of the Lusatia, where the Sproitz-Ludwigsdorf Thrust is a suture between the shelf margin and accretionary wedge, according to the Göthel's (2001) model.

DEFORMATION

Again, the lack of larger exposures in the area of the Jędrzychowice rock-unit makes an intended structural analysis of the Jędrzychowice/Ludwigsdorf wildflysch sequence as limited to some basic features. At the microscale, the massive, homogenous fabric of the wildflysch matrix has locally been overprinted by penetrative foliation (Fig. 10A). This foliation is restricted to more or less continuous deformation zones, that developed in a simple shear regime. Some mudstone clasts that are close to initiated shear zones have been distinctly rotated and display evidence of blasticity of white mica, arranged parallel to the foliation. The asymmetric fabric with s-c structures have commonly started to develop.
Some traces of incipient dynamic recrystallisation can also be frequently observed within the pelitic domains of the wildflysch matrix deposit. The fine to medium-grained, neomorphic muscovite and chlorite are usually observed to form the perfect, tectonically induced parallel arrangements of flakes. Moreover, the neoformed muscovite and chlorite are observed to overgrow the pressure shadows of the clasts (Fig. 10A).

AGE OF THE WILDFLYSCH DEPOSITION

Taking into account the above presented data, the Early Carboniferous age of the Jedrzychowice/Ludwigsdorf wildflysch deposition is generally evident. Similar chaotic successions of the Saxothuringian zone have been defined to be of Middle to Late Visean ages (Behr et al., 1982; Kurze, 1983; Thomas, 1990; Linnemann & Schauer, 1999), interpreted as reflecting the orogenic, tectono-depositional fronts migrations. There is, however, a feature of the Jedrzychowice/Ludwigsdorf wildflysch lithic composition which suggests the earliest Visean age of its deposition. Domination of black-shale type mudstone, fine to pebblesized detrital material within the matrix of olistostrome deposits of the wildflysch seems to be such a feature in the authors’ opinion. The mudstone clasts often disclose a plastic deformation pattern, clearly developed after their reposition into the wildflysch. It does mean that, in part, these clasts came into the wildflysch basin as soft, still not wholly lithified material. Consequently, the conclusion on almost synchronous sedimentation and redepsoition of these mudstones to the Jedrzychowice/Ludwigsdorf flysch basin seems to be well justified. The probably late Tournaisian age of primary deposition of these mudstones (as it was concluded above on the base of correlations with the Golo-glowy mudstone rich black shale sequence), makes the latest Tournaisian/earliest Visean times as most probable age of the Jedrzychowice/Ludwigsdorf wildflysch to flysch sedimentation.

The above conclusion is consistent with the earliest Visean, biostratigraphically proved age of recently formulated, the next new wildflysch-to-flysch succession from the Central Sudetes rock-complex (Wajsprych, 1997). Unfortunately, lack of direct data on the nature of both the substratum and the cover of this succession, makes the problem of the tectono-stratigraphic position of the Jedrzychowice/Ludwigsdorf wildflysch-to-flysch succession within the Lugo-Sudeticum rock-complex a still open question.

CONCLUDING REMARKS, DISCUSSION, AND IMPLICATIONS

In conclusion, three basic theses can be formulated. They are as follows:

1. The presence of new, well-proven, and large-scale wildflysch-to-flysch (Jedrzychowice/Ludwigsdorf) succession of Visean, most probably early Visean age, situated in the westernmost Sudetes and representing the redefined rock-unit, considered till now to be a stratigraphically coherent, Cambrian to Lower Carboniferous succession of the Western Kaczawa Complex;

2. The peculiar lithic composition of the Jedrzychowice/Ludwigsdorf wildflysch, characterised by the presence of a number of often large blueschist olistoliths, associated with the allochthonous bodies of unmetamorphosed to very low grade metamorphosed gabbroic rock, ultrabasites (recognised from the detrital chromites only) of the ophiolite assemblage, andesite (pillow) lavas and volcanoclastics, cherts and turbidite siliciclastics; and

3. The occurrence of large allochthonous bodies of totally silicified evaporites, till now considered in the regional geology as large-scale quartz veins.

The Jedrzychowice rock-unit is situated at the boundary zone between the Görziger Schiefergebirge and the Western Kaczawa complexes. Both these units are still considered in the regional geology to represent the stratigraphically coherent, Lower Cambrian to Lower Carboniferous volcano-sedimentary successions which contain the (upper) Visean flysch (Western Kaczawa complex; Chorowska, 1978; Kozdrój et al., 2001) or flysch and wildflysch (Görziger Schiefergebirge – Kurze, 1983; Thomas, 1990; Linnemann & Schauer, 1999; Gothel, 2001) sequences.
The problems of origin and tectono-stratigraphic position of the flysch-wildflysch sequences in question have been only marginally discussed. Linnemann & Schauer (1999) define the flysch as the "Variscan flysch of the Thuringian facies realm". They ascribed its origin to the Variscan collision time, when the whole Saxothuringian Terrane was uplifted at its northeastern margin and tilted downward to the southwest, causing the flysch and wildflysch sedimentation. Linnemann & Romer (2002) have suggested that the entire Göttinger Schiefergebirge unit can be interpreted as a Lower Carboniferous flysch comprising the allochthonous masses of the dismembered Lower Cambrian to Lower Carboniferous succession. This idea is almost identical to that proved by the present authors in this paper. More recently, Göthel (2001) has interpreted the Göttinger Schiefergebirge complex as composed of Cambrian to Lower Carboniferous succession. This idea is almost identical to that proved by the present authors in this paper. More recently, Göthel (2001) has interpreted the Göttinger Schiefergebirge complex as composed of Cambrian to Lower Carboniferous succession of the shelf margin of the Lusatia Block and the accretionary wedge complex of the Göttinger Synclinorium. According to this proposition, the Sproitz-Ludwigsdorf Thrust is interpreted as the suture between the shelf margin and accretionary wedge successions.

The concept of total allochthonism of all the lithologies of the Jędrzychowice rock-unit formulated in this paper implies some new approach to the problems of (1) – origin of the flysch-wildflysch succession, and, subsequently, of tectono-stratigraphic structure of both the Göttinger Schiefergebirge and the Western Kaczawa complexes; (2) – the tectono-stratigraphic similarity or even identity of both the complexes, well shown by Berezowski & Chorowska (1966); and (3) – their location within the CEVO. The position of the Jędrzychowice/ Ludwigsdorf succession within the tectono-stratigraphic framework of the Sudetes orogenic growth is not directly observed, because both its base and cover have not yet been recognised. However, some aspects of this position appear to be well explained in the frame of a model of the litho-tectono-stratigraphic structure of the Central Sudetes, proposed by Wajsprych (1995, 1997). According to this model, the Central Sudetes orogenic growth is composed of three main structural stages:

(1) – the Lower stage, composed of strongly deformed and polygenic (LT/LP, HT/LP and LT/HP) metamorphosed, lithologically extremely differentiated orogenic assemblage (the Eo-Variscan orogen of many authors). It started to be exhumed at the Middle/Late Devonian transition (ca. 360–365 Ma), when accepting tectonostratigraphic relationships in the Central Sudetes region (Wajsprych, 1997; and references therein);

(2) – unmetamorphosed and practically undeformed, Upper Devonian – lowermost Carboniferous volcano-sedimentary cover deposited in the basin developed over the exhumed terranes; and

(3) – the stage composed of large-scale gravity-driven allochthonic bodies fed by rock complexes of both the (1) and (2) stages.

When accepting this model, one may interpret the Jędrzychowice/ Ludwigsdorf wildflysch deposit as originated due to the gravity-induced sliding, shearing, and subsequent mixing of the Upper Devonian-Lower Carboniferous (Tournaïsian) volcano-sedimentary, unmetamorphosed and undeformed successions. Tectono-stratigraphic position of the Lower Palaeozoic rock-suites within the source orogenic assemblage must remain the open question. The large allochthonous bodies of blueschists probably came from this Eo-Variscan orogenic assemblage. Consequently, the siliciclastic flysch deposit overlying the wildflysch accumulations could be explained as fed by the other, subsequently exhumed lithotectonic units (granitoids, gneisses, mica-schists, etc.) of this orogenic assemblage.

The problem of age of volcanic exotics needs further studies, but one of its aspects is already clear: these magmatic rocks must represent at least two different tectonostratigraphic and geodynamic domains, where andesites are typical of supra-subduction zones, whereas basalts, gabbros and ultrabasites probably represent ophiolite suite. Taking into consideration the main features of the tectonostratigraphic evolution of the Central Sudetes orogenic upgrowth (Wajsprych, 1995, 1997) – as it was presented above – the blueschist metabasalts must be generally pre-Late Devonian. The unmetamorphosed to very low grade metamorphosed volcanites are probably of Late Devonian–Tournaïsian age.

The next, completely new group of problems has been opened by evaporite rocks, found by the authors as the protolith of quartz-rock of the Biesi Kamięń hill, in the northern part of the Jędrzychowice rock-unit. The Biesi Kamięń rock itself is an exceptional lithological series from the point of view of the size of silicified objects, and the scale of silicification processes. Moreover, the question of tectonic position of the Biesi Kamięń evaporites is of special significance, because it is the first evaporite deposit found within the orogenic rock complexes of the CEVO. Consequently, their age must be a subject of special care, what needs further research works.

The position of evaporite rocks within the succession of the Jędrzychowice rock-unit seems to be clear; it is an allochthonous component of the Jędrzychowice/Ludwigsdorf wildflysch what indicates the pre-Visean age of the evaporite sedimentation. Because the block was incorporated into the wildflysch deposit as the silicified evaporite, this same age-frame concerns the silicification event.

The question of the lower age-limit needs to introduce again some aspects of general tectono-stratigraphic structure of the Sudetes orogenic upgrowth. The hypothesis on Late Devonian–early Carboniferous, syn-exhumation basin system, overlying the extended Eo-Variscan orogenic upgrowth, and followed by large-scale gravity allochthonism (Wajsprych, 1995, 1997) is of conclusive significance for this question. The analysed evaporites, as a constituent of a group of unmetamorphosed exotic rocks should be rather connected with this basin system than with the exhumed orogen. Since the Late Devonian to Tournaïsian/Visean transition time-span seems to be the most probable age-frame for the Biesi Kamięń evaporites deposition and its subsequent silicification.

Another possibility, offered by regional geological data set is the Early Cambrian age of the discussed evaporites. Such an age is suggested by the presence of gypsum-containing carbonate sequence, known from the Torgau-Doberlug rock-unit of the north-western part of the Lusatiz
domain of the Saxothuringicum, biostratigraphically (Archeocyatha) evidenced by Elicki (1994) to be Early Cambrian in age. It seems to be an interesting possibility, since the Lower Cambrian evaporites are well known from almost all the platforms of the western Gondwana margin, like the Ossa-Morena, Cantabrian-Iberian, Armorican, and Montagne Noire-Sardinia basins (Gandin, 1987; Demange, 1994; Alvaro et al., 2000).

The results of our preliminary studies have evidenced that the Lower Cambrian carbonates (Frydrychowicz & Frydrychowicz, 1959; Kozdrow et al., 2001; and references therein) from the Biesi Kamięń Hill area are, in fact, secondary, and have originated from carbonatisation of the protolith composed (maybe in the examined part only) of the siliceous mudstone, or even evaporite, if the siliceous mudstone is secondary, too. In this context, however, it is clear that the solution to the problems of age, nature, and primary facies composition of the Biesi Kamięń evaporite association need further careful studies.

Another set of data presented in this paper disclose that at least the northern part of the Upper Proterozoic Lusatia Graywacke Formation, interpreted by many contemporaneous authors (see Linnemann and Romer, 2002; and references therein) as being a foreland succession of the Cadomian orogeny widely developed in the whole of the Saxothuringian zone is, in fact, the Lower Carboniferous flysch. The presence of several metres thick olistostrome intercalations, found in the "Cadomian" siliciclastics, leads to some basic doubts. The lithic composition of these olistostromes intercalations is identical to those found within the Jędrzychowice-Ludwigsdorf succession. The presence of olistostrophia in the Kaczawa Mts. (Sudetes). (In Polish, English summary). Kwartalnik Geologiczny, 2: 245—261.

Streszczenie

DOLNOWIZEŃSKA SUKCESJA
WILDFLISZOWO-FLISZOWA ZAWIERAJĄCA ŁUPKI NIEBIESKIE (SUDETY ZACHODNIE, SW POLSKA)

Bolesław Wajspych & Stanisław Achramowicz

Terenowe i laboratoryjne prace wykonane w kilku ostatnich latach pozwoliły zredefiniować jedną z litotektonicznych jednostek Sudetów zachodnich, dotychczas uważaną za stratygraficznie koherentną, kambryjsko-dolnokarbońską, wulkaniczno-osadową sukcesję, jako prawdopodobnie dolnowizeńską sukcesję wildfliszowo-fliszową. Jednostka ta, opisana tu jako jednostka skalna Jędrzychowic, stanowi najbardziej zachodnią część kompleksu kaczawskiego. Jest ona usytuowana w strefie granicznej pomiędzy Górami Kaczawskimi (Sudety) i Zgorzeleckimi Górami Łupkowymi na Łużycach (Glotzler Schiefergebirge/Lausitz), czy też pomiędzy Sudetum i Lugicum, jako wielkoskalowymi jednostkami tektono-stratigraficznymi oregoruny warzyckiego Europy Centralnej. Liczne korelacje litologiczne i litostratigraficzne pomiędzy zespołami skalnymi jednostki skalnej Jędrzychowic i Zgorzeleckich Gór Łupkowych, wykazanymi przez Berezowskiego i Chorowską (1966), wskazują na przynależność jednostki skalnej Jędrzychowic do Zgorzeleckich Gór Łupkowych.

Opracowaną sukcesję skalną charakteryzuje szczególny skład lityczny materiału detrytycznego. Wśród egzotyków udokumentowano obecność niezmetamorfizowanych skał osadowych (piaskowce, wapienie, małowce z radiolariami oraz radiolaryty), wulkanogenicznych (wulkanoklastyki, lawy poduszkowe), zsylikowanych ewaporatów oraz zasadowych wulkaników, zmetamorfizowanych w warunkach facji łupków niebieskich. Egzotyki gabrowe oraz chromowe spłaszczone, lokalnie obficie występujące w matriks olistostromy, dokumentują obecność serii olistofitowej w obszarze źródlówym. Natomiast detryty kwarcowy, kwarcowo-skałeniowy i bączkowy dowodzi obecności granitoidów, gnejów i łupków metamorficznych w obszarze alimentacyjnym.