The Steinplatte complex (Late Triassic, Northern Calcareous Alps, Austria) – subsidence-controlled development of a carbonate-platform-to-intrashelfbasin- transition

Bernd Kaufmann

Abstract


In Rhaetian (Late Triassic) times, the Hauptdolomit/Dachstein carbonate shelf situated at the passive continental margin of the northwestern Tethys was characterized by an extensional tectonic regime. Rifting and spreading movements fragmented this shelf into a loosely fitted mosaic of fault-bounded blocks characterized by a differential subsidence pattern. This is expressed in significant thickness variations of platform carbonates and in the formation of the intrashelf Kössen Basin. In this study, it can be demonstrated that tectonic subsidence triggered the development of a carbonate platform margin and that the influence of eustatic sea-level changes was negligible. The Steinplatte complex developed at the transition of the Kössen Basin to the Dachstein Carbonate Platform. Small-scale isolated carbonate mounds situated on a smoothly inclined homoclinal ramp characterized the initial phase and acted as nuclei of further carbonate buildup growth. However, only the ideal palaeogeographic
position far enough away from the carbonate-suppressive terrigenous influence of the Kössen Beds, combined with vigorous carbonate production stimulated by rapid subsidence-caused sea-level rise, favoured continuous mound growth. Once established, the carbonate buildup was characterized by rapid aggradational growth, developing a palaeogeographic high with a steep slope and a depression with decreased sedimentation behind, several kilometres distant from the Dachstein Carbonate Platform. Contemporaneously, isostatic adjustment caused an accommodation minimum on the nearby margin of the Dachstein Carbonate Platform leading to its westward progradation. Fading out of subsidence caused filling of the former depression in the back of the buildup by prograding shallow-water Dachstein Limestones. Thus, a new platform margin was established in the Steinplatte area, elevated almost 200 m above the adjacent Kössen Basin. At the Triassic-Jurassic boundary, the Steinplatte complex was subjected to subaerial exposure by a sudden tectonic uplift followed by a rapid isostatic drop. Emergence is indicated by levels of karstified limestones directly underlying supposed exposure surfaces. Final drowning of the Steinplatte complex as well as of the whole Dachstein Carbonate Platform is indicated by the cover of Early Jurassic (Sinemurian) deeper water, ammonite bearing limestones (Adnet Formation).


Keywords


Northern Calcareous Alps; Steinplatte; Subsidence; Rhaetian; Reef; Carbonate Platform

Full Text:

PDF

Refbacks

  • There are currently no refbacks.