First record of the late Campanian heteromorph ammonite *Nostoceras hyatti* from the Alpine Cretaceous (Grünbach, Gosau Group, Lower Austria)

HERBERT SUMMESBERGER¹, MARCIN MACHALSKI² & MICHAEL WAGREICH³

¹ Naturhistorisches Museum Wien, Burgring 7, A-1010 Wien, Austria.
E-mail: herbert.summesberger@nhm-wien.ac.at

² Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL-00-818 Warszawa, Poland.
E-mail: mach@twarda.pan.pl

³ Universität Wien, Department für Geodynamik und Sedimentologie, Althanstr. 14, A-1090 Wien, Austria.
E-mail: Michel.Wagreich@uni.vie.ac.at

ABSTRACT:

The heteromorph ammonite *Nostoceras* (*Nostoceras*) *hyatti* is described for the first time from the Piesting Formation (Gosau Group; Upper Cretaceous) at Grünbach along the eastern margin of the Northern Calcareous Alps, Lower Austria. This record significantly extends the geographic range of this late Campanian marker species; it was not previously known from the Alpine Cretaceous. Moreover, it corroborates earlier age assignments as late Campanian of the (lower) part of the Piesting Formation. A matrix sample taken from the specimen studied has yielded taxa whose range covers zones CC20 to CC23, or UC 15P to UC18, of the standard nannofossil zonation.

Keywords: Campanian, Cretaceous, Piesting Formation, Gosau Group, Lower Austria, Ammonites, Calcareous nannofossils.

INTRODUCTION

The heteromorph ammonite *Nostoceras* (*Nostoceras*) *hyatti* STEPHENSON, 1941 is widely recognised as an excellent stratigraphic marker for the latest Campanian, both in terms of the traditional ‘boreal’ definition of the Campanian/Maastrichtian boundary (KENNEDY & al. 1992; HANCOCK & KENNEDY 1993; WARD & ORR 1997) and of new criteria based on the Global Stratotype Section and Point (GSSP) for the base of the Maastrichtian Stage at Tercis, Landes, France (ODIN & LAMAURELLE 2001).
The aim of the present paper is to document *N. hyatti* for the first time from the upper Campanian to lower Maastrichtian Piesting Formation (Gosau Group, eastern margin of the Northern Calcareous Alps, Lower Austria). This record significantly extends the geographic range of the species, as it was not previously known from the Alpine Cretaceous.

PROVENANCE OF THE SPECIMEN

The single specimen of *Nostoceras (Nostoceras) hyatti* discussed here is registered as NHMW 1935.III.4 (NHMW = Museum of Natural History, Vienna). The label, in Roland Brinkmann's handwriting, reads “Anisoceras wernickei WOLLEM.”. The specimen was subsequently assigned to the genus *Hamites* (Brinkmann 1935, p. 6). According to the label, the specimen was collected from the Upper Cretaceous of the Gosau Group, in the environs of Grünbach, Lower Austria (Text-figs 1, 2). No further data on the locality and horizon of the specimen studied are available.

The matrix of specimen NHMW 1935.III.4 is a fine-grained, dark grey sandstone to coarse siltstone. It allows to conclude that the specimen came from the Piesting Formation of the Gosau Group as defined by Summesberger & al. (2000) and Summesberger & al. (2002) (see Text-fig. 2 for stratigraphic log of the Gosau Group with distribution of the most important fossils).

The carbonate cement of the specimen differs from that of the lower Maastrichtian ammonites in collections from Grünbach (Summesberger & al. 2002, pl. 1, fig. 4), which is coarser and more brownish in colour. A fine specimen of *Pseudokossmaticeras brandti* (Redtenbacher, 1873) (NHMW 1935.III.5.) from Grünbach, labelled and listed by Brinkmann (1935, p. 6) as ‘Pachydiscus egertoni FORB.’ [= Pseudokossmaticeras brandti (Redtenbacher, 1873)] is preserved in dark grey sandstone similar to that of NHMW 1935.III.4, suggesting identical provenance (Text-fig. 2).

GEOLOGICAL BACKGROUND

The Gosau Group of the Grünbach – Neue Welt area in the eastern part of the Northern Calcareous Alps forms an approximately 14 km long, deformed syncline of Upper Cretaceous to
Fig. 2. Compiled section and distribution of more important fossils in the Gosau Group at Grünbach (modified from Summesberger in Piller & al. 1997; Egger & al. 2000; Summesberger & al. 2002)

<table>
<thead>
<tr>
<th>STAGES GROUP</th>
<th>FORMATIONS</th>
<th>LITHOLOGY</th>
<th>IMPORTANT FOSSILS</th>
<th>EXPOSURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maastrichtian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Gosau Subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Campanian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Campanian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Gosau Subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Santonian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triassic carbonates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GOSAU GROUP OF THE GRÜNbach - NEUE WELT LITHO- AND BIOSTRATIGRAPHY

- **Globigerinids**
- **Globotrupanicids**
- **Pachydiscus neubergicus**
- **Inoceramid fauna**
- **Pachydiscus epipectus**
- **Nostoceras hyatti**
- **Pseudokosmaticeras brandti**
- **Trochoceramus cf. morgani**
- **Trochoceramus cf. dobrovi**
- **Orbitoides**
- **Pseudokosmaticeras brandti**
- **“Orbitoidensandstein”**
- **Coal seam**
- **Dreistätten conglomerate**
- **Pollen and spores**
- **Flora of Grünbach**
- **Reptile fauna**
- **Placenticeras polyopsis, Cordiceramus muelleri**
- **Hippurites biostrome**
- **Trochactaeon mass occurrences**
- **Brachiopods, rudists**
- **Erosion, karstification, bauxite**

- **Piesting sports field**
- **Muthmannsdorf**
- **Grünbach**
- **S Piesting road cutting**
- **Lupat quarry**
- **Piesting**
- **Grünbach**
- **Abandoned coal mine**
- **Muthmannsdorf shaft**
- **Maiersdorf quarry**
- **Natural Monument Grünbach**
- **Railway cutting**
- **SW Piesting road cutting**

Abandoned coal mine
Paleogene sediments. In terms of lithostratigraphy, five formations can be distinguished (SUMMESBERGER & al. 2000, SUMMESBERGER & al. 2002; Text-fig. 2). These are (from bottom to the top): the Kreuzgraben Formation (coarse conglomerate with reddish matrix), the Maiersdorf Formation (limestones, sandstones and marls; rudist bioherms, *Trochactaeon* beds), the Grünbach Formation (“Coalbearing series” of KOLLMANN & SUMMESBERGER 1982), the Piesting Formation (*Inoceramenschichten* = *Inoceramus* Beds of earlier authors) and the Zweiersdorf Formation (marls and sandy turbidites).

The Piesting Formation is a several hundred metres thick succession of deeper marine siliciclastic sediments. It comprises upper Campanian to lower Maastrichtian strata. Late Campanian age is indicated by foraminifera (OBERHAUSER in PLÖCHINGER 1961). An early Maastrichtian date for portions of the Piesting Formation is suggested by the ammonites *Pachydiscus neubergicus* (von HAUER, 1858) from Grünbach and *Pachydiscus epiplectus* (REDTENBACHER, 1873) from the nearby village of Muthmannsdorf, although it must be noted that specimens of *P. neubergicus* occur well below the recently accepted Campanian/Maastrichtian boundary at Tercis (MACHALSKI 2005, p. 655) and in the Middle Vistula River section, central Poland (WALASZCZYK 2004, p. 108). Another ammonite recorded from the Piesting Formation, *Pseudokossmaticeras brandti* (REDTENBACHER, 1873), supports late Campanian age (e.g. HANCOCK & KENNEDY 1993).

Late Campanian nannozones CC18-CC22 are documented from the section S Piesting, early Maastrichtian nannozone CC24 from the sports field section (SUMMESBERGER & al. 2002). The terrestrial to shallow-marine Grünbach Formation underlying the Piesting Formation is early Campanian, the overlying turbiditic Zweiersdorf Formation is of Paleocene age (PLÖCHINGER 1961; SUMMESBERGER 1997).

SYSTEMATIC PALAEONTOLOGY

Order Ammonoidea VON ZITTEL, 1884
Suborder Ancyloceratina WIEDMANN, 1966
Superfamily Turrilitoidea GILL, 1871
Family Nostoceratidae HYATT, 1894
Genus and Subgenus Nostoceras HYATT, 1894

TYPE SPECIES: *Nostoceras stantoni* HYATT, 1894, p. 569, by original designation.

Nostoceras (*Nostoceras*) *hyatti* STEPHENSON, 1941
(Text-fig. 3.1-3.3)

1941. *Nostoceras hyatti* STEPHENSON, p. 410, pl. 81, fig. 9-12.
1974. *Nostoceras hyatti* STEPHENSON; COBBAN, p. 10, pl. 5, fig. 1-21; pl. 1, 6, fig. 1-12; pl. 7, fig. 1-10; pl. 8, fig. 1-30, text-fig. 12 (with synonymy).
1980. *Nostoceras pozaryskii* BLASZKIEWICZ, p. 26 (*partim*), pl. 10, fig. 8, 9, 12.
1993. *Nostoceras* (*Nostoceras*) *hyatti* STEPHENSON, 1941;
HANCOCK & KENNEDY, p. 162, pl. 9, fig. 1, 4; pl. 14, fig. 2-4; pl. 16, fig. 2, 3; pl. 17, fig. 10, 11; pl. 18, fig. 2-4, 6,7; pl. 19, fig. 1-4, 8-10 (with synonymy).
2000. *Nostoceras* (*Nostoceras*) *hyatti* STEPHENSON, 1941;
KENNEDY & al., p. 12, text-fig. 6.
2000. *Nostoceras* (*Nostoceras*) *hyatti* STEPHENSON;
KÜCHLER, p. 480, pl. 17, fig. 2-6.
2001. *Nostoceras* (*N.*) *hyatti* STEPHENSON, 1941 I subsp. nov.; KÜCHLER & ODIN, p. 516, pl. 3, fig. 4; pl. 4, fig. 11, 13.
KÜCHLER & ODIN, p. 517, pl. 3, figs 1-3, 6-7, 10, 11-12, 13; pl. 4, figs 3-5.
2001. *Nostoceras* (*N.*) *hyatti*; KÜCHLER & al; p. 739, pl. 5, fig. 3, 6, 7. pl. 6, fig. 1.

TYPE: Holotype, by original designation, is USNM77258, the original of STEPHENSON (1941, p. 410, pl. 81, fig. 9) from the upper Campanian Nacatoch Sand on Postoak Creek on the north edge ofCorsicana, Navarro County, Texas.

MATERIAL: A single specimen, NHMW 1935.III.4, from the Piesting Formation of the Gosau Group at Grünbach (exact locality and horizon unknown).

DESCRIPTION: Specimen NHMW 1935.III.4 is an internal mould with adherent whitish shell remnants. It is a U-shaped body chamber with a half of the last whorl of the helix of an adult, dextrally coiled individual. The earlier whorls of the helix are missing, and its preserved part is still in contact with the body chamber but displaced to a certain degree by a large crack reducing the original
angle between helix and body chamber. The whole specimen is slightly crushed. Both shafts of the body chamber are parallel, the terminal part bringing the aperture again in close proximity of about 25 mm to the helix.

The specimen is 90 mm in length. The preserved part of the helix is the last half whorl, now flattened and stretched by deformation of its curvature. The apical angle is unknown. The length of the body chamber is 80 mm, and that of the terminal shaft about 52 mm. The aperture is indicated by crowding of ribs. Both shafts are more or less straight. The section of the last whorl of the helix may have been rounded with a dorsal concavity. Whorl height (intercostally) is approximately 15.8 mm. The section of the body chamber is high oval, enhanced by lateral compaction. Whorl height of the body chamber is about 26 mm, and whorl breadth is about 16.5 mm (both measurements intercostally).

Ornament consists of strong ribs and a differentiated tuberculation. There are about 15 or more sharp and narrow ribs on the last half whorl of the helix with narrowly rounded and faintly crenulated crests. Ribs bifurcate irregularly or zig-zag on venter and flanks of the helix, the junctions are marked by distinct sharp tubercles which are arranged in two parallel rows. The ribs are spaced in relatively wide distances (9 per 30 mm). On the ventrolateral edge rib junctions are without tubercles.

The dorsum of the helix is similarly ribbed but somewhat finer and narrower and non-tuberculat-ed. Ornament changes abruptly after the juvenile stage: there are about 24 sharp and undivided, widely spaced ribs on the entire body chamber (6-7 per 30 mm). They are entire and sharply crested without crenulation. Perhaps due to deformation ribbing seems to begin rursiradicate on the entire body chamber, becoming straight and slightly fal-coid at the curvature, being straight and rursiradi-ate again at the terminal part of the body chamber. Each rib is decorated by two narrow bullae, changing into 9 pairs of distinct clavi at the curvature, finally changing again into weak bullate rib edges on the terminal portion of the shaft. In general, ribs are strengthening around the venter and weakening on the dorsum.

DISCUSSION: According to Kennedy & al. (2000, p. 12, fig. 6 A-F), Nostoceras (Nostoceras) hyatti appears to occur as a pair of dimorphs, the smaller microconch (fig. 6 A-C therein) and the larger macroconch (fig. 6 D-F therein). When compared with material described by Kennedy & al. (2000), the Grünbach specimen may be tenta-tively classified as a macroconch.

Differences between Nostoceras (N.) hyatti and other species of the genus (subgenus) have been discussed at length by Cobbán (1974), Kennedy & Cobbán (1993), Hancock & Kennedy (1993),
and Kennedy & al. (2000). Nostoceras pozaryskii Blaszkiewicz, 1980, was described from the siliceous chalk (opoka) as exposed at Piotrawin quarry, Middle Vistula River section (Piotrawin Opoka sensu Walaszczyk 2004). Its partial synonymy with N. (N.) hyatti was suggested by Hancock & Kennedy (1993, p. 162), a view accepted herein.

Kuchler & Odin (2001, p. 517) introduced Nostoceras (Nostoceras) hyatti Stephenson I, as a new subspecies from a stratigraphically earlier horizon, whereas Nostoceras (Nostoceras) hyatti Stephenson II is based upon Stephenson’s holotype (1941, pl. 81, fig. 9). Only microconchs are described of N. (N.) hyatti Stephenson I (Kuchler & Odin 2001). It differs in its larger size and distant ribbing of the body chamber from the stratigraphically younger nominate subspecies. The subspecies concept introduced by Kuchler & Odin (2001) is based on material from Tercis, Landes, France, and has to be tested on American materials from continuous sections (ibidem, p. 525). Until then we leave the species undivided and are content to state that the specimen from Grünbach is closer to Nostoceras (N.) hyatti Stephenson II sensu Kuchler & Odin (2001).

Stratigraphic and Geographic Range: In stratigraphic terms, the first occurrence of Nostoceras (N.) hyatti in the Saratoga Chalk of Arkansas (USA) was introduced as a marker indicating the base of the N. (N.) hyatti assemblage zone of the late Campanian by Kennedy & Cobbán (1993, p. 404). Subsequently, it was introduced by Kennedy & al. (1992) and Hancock & Kennedy (1993) as an index fossil for the uppermost zone of the Campanian at Tercis and in the Middle Vistula River section. In the latter case, however, the base of the zone was defined on the appearance of a scaphitid, Jeletzkytes nodosus (Owen), with N. (N.) hyatti (= N. pozaryskii of Blaszkiewicz 1980, in part) appearing some way above the base of this zone (Kennedy & al. 1992).

The concept of the Nostoceras hyatti Zone as defined by Kennedy & al. (1992) was stated to be unclear by Ward & Orr (1997, p. 417), who proposed the definition of its base ‘by the first occurrence of the zonal index, rather than any of its associated fauna, and that the top of the zone be defined by the base of the overlying zone of Pachydiscus neubergicus or its equivalent outside the biogeographic range of P. neubergicus’.

Whatever the definition of the Nostoceras hyatti Zone zone should be, it is clear that Nostoceras (N.) hyatti is a typically late Campanian species. The records of this species from strata traditionally assigned to the lower Maastrichtian in northern Spain (Kuchler 2000, 2001) and in the Middle Vistula River section (Machalski, in preparation), fall within the upper Campanian, following the new definition of the Campanian/Maastrichtian boundary (Odin & Lamaurelle 2001; see also comments in Walaszczyk 2004 and Machalski 2005).

In geographic terms, the species occurs in Poland [see reinterpretation of data of Blaszkiewicz (1980) by Hancock & Kennedy (1993)], France (Hancock & Kennedy 1993; Kuchler & Odin 2001), northern Spain (Kuchler 2000, Kuchler & al. 2001), in several areas of the U.S.A. (Stephenson 1941; Cobbán 1974; Kennedy & al. 1993; Kennedy & Cobbán 1993), Angola (Howarth 1965), Madagascar (Collignon 1970), Israel (Lewy 1967) and Austria (this paper).

Nannofossil Analysis

A nannofossil sample was taken from the matrix of specimen NHMW 1935.III.4 to check the age of the fossil and establish its position within the Gosau Group of the Grünbach area. Due to the sandy to silty character of the sediment the nannofossil sample was rather low in abundance (0.5 to 1 specimen per field of view in light microscope, magnification 1000x) and preservation was poor. Therefore, the results of nannofossil investigations are rather disappointing and yield no further information on correlations to other fossil localities in the area. The following species of nannoflora were identified:

Arkhangelskiella cymbiformis Vekshina, 1959
Biscutum constans (Görka, 1957) Black, 1959
Biscutum cf. magnus Wind & Wise, 1977
Braarudosphaera bigelowi (Gran & Braarud, 1935) Deflandre, 1947
Ceratolithoides cf. aculeus (Stradner, 1961)
Prins & Sissingh in Sissingh, 1977
Chiastozygus litterarius (Görka, 1957)
MANIVIT, 1971
Cribrosphera ehrenbergii (ARKHANGELSKY, 1912) DEFLANDRE, 1952

Cyclagelosphaera sp.

Eiffellithus turrisseiffelii (DEFLANDRE & FERT, 1954) REINHARDT, 1965

Heteromarginatus sp.

Lithraphidites carniolensis DEFLANDRE, 1963

Lucianorhabdus cayeuxii DEFLANDRE, 1959

Micula decussata VEKSHINA, 1959

Prediscosphaera cretacea (ARKHANGELSKY, 1912) GARTNER, 1968

Rucinolithus sp.

Stradneria crenulata (BRAMLETTE & MARTINI, 1964) NOEL, 1970

Quadrum (Uniplanarius) cf. gothicum (DEFLANDRE, 1959) HATTNER & WISE, 1980

Watznaueria barnesae (BLACK, 1959) PERCH-NIELSEN, 1968

Zygodiscus sp.

The age of this nannofossil assemblage is middle/late Campanian to early Maastrichtian according to the presence of a few marker species such as Ceratolithoides cf. aculeus and Quadrum (Uniplanarius) cf. gothicum. According to standard nannofossil zonations, the sample ranges from CC20 to CC23 (sensu PERCH-NIELSEN 1985) or UC 15½ to UC18 (sensu BURNETT 1998). A more detailed zonal attribution was not possible because several important marker species such as Broinsonia parca or Quadrum (Uniplanarius) trifidum are missing; whether this is due to diagenesis and the low abundances of nannofossils in the samples or due to the stratigraphic position could not be determined. A comparison with nannofossil data from the Nostoceras hyatti Zone in northern Spain by KUCHLER & al. (2001) indicates a position of this ammonite zone within CC22 to CC23a/UC15d½ to UC16 which does not contradict the results from the Grünbach specimen.

SUMMARY AND CONCLUSIONS

The present paper records Nostoceras (Nostoceras) hyatti from the Piesting Formation of the Gosau Group at Grünbach, along the eastern margin of the Northern Calcareous Alps, Lower Austria. The species was previously known from various regions of the world, but not from the Alpine Cretaceous. Thus, the Grünbach record markedly extends the geographical range of this stratigraphically important species.

Outside the Grünbach area, N. (N.) hyatti occurs in upper Campanian strata. Thus, its occurrence in the Piesting Formation confirms earlier dating of the (lower) part of this formation as of the late Campanian, based on micro- and macro-fossil evidence. New nannofossil data, gained from the analysis of the matrix of the Grünbach specimen, are consistent with the latter conclusion.

Acknowledgements

MACHALSKI’s trip to Vienna was supported by the Institute of Paleobiology of Polish Academy of Sciences and by the Naturhistorisches Museum Wien. Photographic work was done by Alice SCHUMACHER and technical work by Franz TOPKA (both Naturhistorisches Museum Wien). Agnieszka KAPUŚCINKA (Nefryt Studio, Warszawa) is acknowledged for computer processing of the figures. John W.M. JAGT is thanked for linguistic correction of the text. Critical reviews of the typescript by William A. COBBAN (Lakewood, Colorado) and an anonymous reviewer are greatly appreciated.

REFERENCES

STEPHENSON, L.W. 1941. The larger invertebrates of the Navarro Group of Texas (exclusive of corals and crustaceans and exclusive of the fauna of the Escondido Formation). University of Texas Bulletin, 4101, 1-641.

nal Cretaceous Symposium Vienna 2000. Österre-
ichische Akademie der Wissenschaften, Schriftenreihe
der Erdwissenschaftlichen Kommissionen, 15, 373-399.

WALASZCZYK, I. 2004. Inoceramids and inoceramid
biostratigraphy of the Upper Campanian to basal
Maastrichtian of the Middle Vistula River sec-
tion, central Poland. Acta Geologica Polonica, 54,
95-168.

ammonite and planktonic foraminiferal biostratigra-
phy from Tercis, France: implications for defining the

Manuscript submitted: 15th May 2007
Revised version accepted: 25th October 2007