Vol. 24, No. 1

A combination of pseudovirgulae and lateral branching in a species of dichograptid

Abstract

The development of Sigmagraptus praecursor Ruedemann is described in some detail from flattened and three dimensional material from Quebec. It is shown that early growth stages possess long pseudovirgulae developed from the dorso-lateral side of the apertures of thi 1^{1} and $t h 1^{2}$, and along which the first pair of hateral branches grow in an upwards direction. Pseudovirgulae are lacking in later lateral branching. Sigmagraptus praecursor exhibits dichograptid development, th 1^{*} forming a single crossing canal and originating low down on thi ${ }^{1}$ which probably has its origin on the prosicula. Pseudovirgulae and a combination of these with lateral branching has not been previously recorded in Ordovician graptolites: it is postulated that the pseudovirgulae may have assisted buoyancy, stability and orientation of the early growth stages.

INTRODUCTION

Much of the material used in this paper was collected by the staff and students at Laval University, Quebec, and by Dr J. Riva, Professor Fitz Osborne and M. Rene Bureau in particular. All the specimens are deposited in the collections of the Department of Geology at Laval. The Quebec specimens are undoubted extensus zone, Arenig in age, whilst the closely similar form recorded by Dewey \& al. (1970) as Sigmagraptus aff. praecursor Ruedemann is form the same horizon in Western Eire. Ruedemann's originals from the Deep Kill section (bed 3) of New York are probably also extensus zone, Arenig and occur below strata yielding Pseudotrigonograptus ensiformis, whilst the Australian and New Zealand recordings of Sigmagraptus spp. (see below) are from the Bendigonian and Chewtonian or approximately extensus zone Arenig.

Acknowledgements. I am indebted to Dr John, Riva, Professor Fitz Osborne and Rene Bureau of Laval University, Quebec for a great deal of help in the field and laboratory. This cesearch was also assisted by the grant of a moiety of the Tyrell Fund by the Geological Society of London. I should like to thank Professor O. M. B. Bulman and Dr Dennis Jackson for help with the manuscript.

SYSTRMATIC DESCRIPTION

Suborder Didymograptina Lapworth, 1880; emend. Bulman 1970 Family Dichograptidae Lapworth, 1873
 (Section Goniograpti: multiramous forms) Genus SIGMAGRAPTUS Ruedemann, 1904

Type species: Sigmagraptus praecursor ixuedemann, i904, by orlginal designation.
Diagnasis. - Rhabdosome with two zig zag main stipes with lateral branches off each theca of the main stipe, arranged alternately on both sides. Development dichograptid: thi ${ }^{1}$ probably originates on prosicula; th 1^{2} originates low down on th1ㄹ, near to sicular aperture and forms one crossing canal. Thecae long slender tubes with overlap up to almost half; theoae of main stipe longer than those of lateral branches.

Remarks, - Sigmagraptus is essentialily a two stiped Goniograptus but differs in its mode of branching from the only Gomiograptus known in any detail (Jaanusson 1965) in that it lacks an accessory theca and has each theca of the main stipes as a dicalycal theca. This means that "laterail branching" of Sigmagraptus is different from the "dichotomous ibranching" of Goniograptus (see discussion under "Remarks" of S. pruecursor description).

Bulman (1970) considers the thecae of Sigmagraptus to have little overlap, but Ruedemann (1904) depicted overlap of almost $1 / 2$, and the present material confirms this (Fig. 3B) even though it is mot cleanly seen in flattened specimens.

The Quebec specimens are associated with Didymograptus bifidus, D. extemsus, D. nitidus, D. patulus, Phyllograptus, species of.Tetragraptus, including T. serta, T. fruticosus, and Dichograptus octobrachtatus in the C zone of the Levis shales, that is approximately extensus zone Arenig. Very few species have been recorded in the genus. Ross \& Berry (1083) place Bryograptus kirki Ruedemann (1947) in Sigmagraptus? kirki, but the present writer agrees with Ruredemann. The following Australian species of Sigmagraptus have been recorded: S. crinitus (T. S. Hall), S. laxus (T. S. Hall), S. yandoitensis Harris \& Thomas.

Sigmagraptus praecursor Ruedemann, 1904
(Figs 1—3)

[^0]Materiai. - About 200 specimens, many early growth stages, mostly flattened: but not tectonically distorted, but some pyritized or in three dimensions in doiomitized mudstone.

Horizon. - C zone, Levis Shale, Ordovician, from various localities at Levis, Quebec; beds approximately coeval with the extensus zone of the Arenig strata in Great Britain.

Description. - The slicula is well seen in many specimens and has a length of $2.0-2.5 \mathrm{~mm}$, usually mearer the latter figure, and an apertural diameber (flattened) of about 0.8 mm . A short portion of delicate nema is often preserved and on one specimen ($(F i g .1 H)$ this has a length of 1.5 mm when the sicula is only 1.8 mm grown. The prosicula has ibeen only doubtfully seen in one specimen (Fig. 1I) and appears to be of the order off 0.5 mm in length. The virgella is a short ($(0.2-0.3 \mathrm{~mm})$, broad process. Figure $1 A$ allso shows that when the sicula has reached a length of 1.8 mm , th 1^{1} is 0.4 mm long and has its origin very high on the sicula, almost certainly on the prosicula. The high origin of thil is confirmed by the specimen illustrated in: Fig. 1J, but normally the long slender prothecal portion of th 1^{1} is exceedingly difficult to discern.

Th1 ${ }^{1}$ grows downwards on the virgella side of the sicula, perhaps for as much as 2.0 mm in some specimens, until it reaches the apertural region of the sicula. There it turns outwards and grows away from the siovalat an angle of about 90°, occasionally as much as 120° (Figs $1 B, I$). This free portion has a length of $1.2-$ 1.4 mm , an initial diameter (flattened) of $0.1-0.15 \mathrm{~mm}$ and a slightly flared, denticulate aperturall region up to 0.3 mm wide (Fig. 1D). In turning awray from the: sicula in such a manner thil leaves the virgella process free and olearly visible in most specimens (e.g. Fig. 1B).

Th1 ${ }^{2}$ seems to originate low down on th 1^{1} just before the latter leaves the sicula (F ig. $1 E, F$). It grows away from th1 1^{1} at a high angle ($110-120^{\circ}$), and slightly downwards, therealiter growing away from the sicula at about 90° at the aperitural lip of the sicula on the anti-virgella side. In consequence th1 ${ }^{2}$ reaches somewhat lower than th 1^{1} and can easily the recognized because of this even in poorly preserved. specimens. There is, therefore, only one crossing canal and the devellopment is of dichiograptild type. In most cases, in revense view (Fig. 1F), thi $\mathbf{1}^{2}$ gmows across the front of the sicula, but in a few specimens (Fig. 1 J) the opposite seems to be the case.. In the specimen shown in Fig. $1 J$ thla apparently grows across the front (as drawn). and its course is indicated by dashed lines: this specimens is also one of a few with little indication of a zig-zag growth of the main stipe, so that it is just possible that it represents another species. Th1 ${ }^{2}$ has an unusually variable free ventral wall of $1.20-1.75 \mathrm{~mm}$ length, and a total length of up to 1.95 mm . Idike thit, th 1^{2} has a denticulate aperture, often with a thickened lip, but the denticulation is almost. certaintly a result of tilattening (see bellow under description of cladia).

The writer has no growth stages between the completion of 1^{1} and 1^{2}, but very shortly after they are fully grown each develops a long, very slender, dorso-lateral apentunall spine (Fig. $1 B, D, E, G, H$ eitc.). These spines may be up to 4.0 mm in length and are directed upwards at approximately $40-50^{\circ}$ to the direction of growth of each of the first two theca, so that the rhabdosome as a whole at this stage thas the appearance of the latter W (Fig. 1B). The spines are certainly apertural in origin (Fig. 1C), and in Fig. $2 A$ the spine on 1^{1} is circular in cross section at the position of the small kink (arrowed) and rather spatulate at its tip. Subsequently the first. two lateral branches of the thabdosome grow along the spines and the latter are thus best regarded as pseudowirgulae, albeit at present unique amongst Ordovician. grap'tolite species.

Following development of the pseudovirgulae th 2^{1} and 2^{2} arise from th 1^{1} and 1^{8} respectively, and usually form a sharp angle with their parent theca (Fig. $1 E, H$.
and Fig. 2A. . The gnowth of 2^{1} (Fig. $1 E$) is downwards from thit at an angle of some $30-40^{\circ}$ from the latter's line of growth; occasionally the angle may be mach as 90° (Fig. $1 F, H$) and less commonly may continue in the same line as the parent theca (Fig. 1IF and Fig. 2C). Thecae $1^{1}, 2^{1}, 3^{1}$ et seq. form one of the two main stipes (Firg. 2D) and thecae $1^{2}, 2^{2}, 3^{3}$ et seq. form the other; in the commonest situation each theca of the main stipe is at an angle of some $30-40^{\circ}$ to the theca preceding and the one following (Fig. 2E) so that each main stipe has a pronounced zig-zag appearance. At the angular bends are lateral branches directed alternately upwards and downwards (Fig. 2E, and see below). Figure $1 E$ depicts not only the angular change in growth of the main stipe at the aperture of th1 1^{1}, but the position of th2 ${ }^{1}$

with respect to this aperture and its pseudovirgula. Such a relationship implies som degree of overlap betveen thil ${ }^{1}$ and 2^{1} (shown by the dashed line) and this is con firmed in other specimens (Fig. 1G and Fig. 2A) where th 2^{1} clearly originates abour $0.5-0.7 \mathrm{~mm}$ below the aperture of thil and on the dorsal side of that theca. At the :aperture itself th2 ${ }^{1}$ turns sharply downwards and away from the pseudovirgula (Fig. 1E, G and Fig. 2A). Figure 1C is an enlargement of the base of the pseudo-
virgella shown in Fig. 1B: there is a slight bend near the base of the spine and an associated embayment in the apertural margin of thil with a suggestion of growth lines (dashed). It is not considered that these represent the origin of the lateral branch, but rather that they show the origin of the spine itself from the fusellar tissiue of the thecal tube. The preservation is not good, however, and small portions of periderm may be missing along the apertural lip, which is not strongly thickened, an interpretation perhaps supported by the specimen depicted in Fig. 2A.

Figure 11F, \boldsymbol{H} illustrate the further devellopment of th $2^{\prime \prime}$ and 2^{2}. In Fig. 11 and 1 J th 2^{1} and ${ }^{2}$. are seen developing in a straight line with th 1^{1} and 1^{2}, whilst Fig. $2 A$ is of the more usual situation and also confirms that several main stipe thecae develop before the first lateral branch. The writer has seen up to 3 main stipe thecae of the first series and up to 2 of the second completed before lateral branch development (e.g. Fig. 2A). Regrettably there are few growth stages showing the growth of thecae along the pseudovingulae (Fig. 2B). This last specimen has three completed thecae on the first lateral branch of the first thecal serles and approximately 0.5 mm of pseudovirgula projecting beyond them. On the same specimen one and a half thecae are developed on the first Iateral branch of the second series but the pseudovirgula is not preserved. Both main stipes are broken after the first thecae and first lateral branch. It is fairly common to find lateral branch fragments with a.promounced dark rod along the dorsal wall (Fig. 3A, C) which certainly represents the pseudovirgula. These fragments are presumably of the first pair of lateral branches: that they are often longer than three thecae indicates that the pseudovirgulae must graw with the branches.

Initial lateral branch development is difficult to understand. It is certain that th n of the main stipe gives rise to $t h^{n+1}$ of the main stipe by a dorsal bud some

Fig. 1
Sigmagnaptus praecursor Ruedemann, 1904
A - siculla and early growth of th 1^{1} with long nema preserved; Lauzon Country, R. Bureau Colln., same slab as it \& H
B - pserudotvirgullae develioped libut th 2^{1} and 2^{2} mot yet started, obverse view; section 100, Lauzon Counity, R. Bureau \& J. Riva Colln.
C - enlargement of ibase of spine of th 1^{1} of B
D - early growth stage with part of th2 2^{2} developed; black area near aperture of th 1^{2} is eanly overlapping gnowth of th $2^{\text {s }}$; same lacality as B, silab now labelled \boldsymbol{R}. B. R. 2; D. extensus, D. mitidus on same slab
E - showing growth of th2 ${ }^{1}$ and long adpressed portion of thil; same slabl as A and H F - th 2^{2} slightly less well developed than th 2^{1}, pseudovirgulae probably broken off; Lauzon County, R. Bureau Colln.
G - th 2^{1} has thin perilderm, is more advanced than th 2^{2},'rand growth stage is about the same as F
H - some growth stage as F and G, but showing full development of pseudovirgula from aperture of $t h 1^{1}$; same slab as A
I - junction of prosicula and metasicula possibly preserved; early efrowth of th2 ${ }^{\text {a }}$ very blackened; pseudovirgulae ?broken; locality $\mathbf{N} 200$, Lauzon County, J. Riva \& R. Bureau Colln. Suggested course of th $1^{1} \& 1^{2}$ across front of sicula - dashed line J - orilgin of th 1^{1}; apparent growth across fron't of sicula (as drawn) is indicated by dashed Jines; specimen pyritized and immediatelly adjacent to specimen depicted
in D
All tigures are $\times 15$ except $C \& E$, which are $\times 30$.
$0.5-0.7 \mathrm{~mm}$ below the aperture of m (Fig. 2 E). The origin of $t \mathrm{~h}^{n+1}$ is sometimes seen as a didistinct lump ((ig. 2F). There is usuailly a shanp change in the angle of growth as th $n+1$ leaves the apertural region of thm (Fig. $2 E$) and the lateral branch appears to arise at this point on thn+i and to grow away at a high angle to the parent stipe (Fig. 2E, F). Although there are few growth lines on the material to hand, some three dimensional specimens (Fig. 2G, H) strongly suggest that this is the correct interpretation of the origin of the first theca of the lateral branch. Figure $2 G$ shows the high angle the branch makes with the parent stipe, but when this part of the specimen was lifted clear of the rock with a fine needle the relationship seen in Fig. $2 H$ was apparent. The last figure is drawn laterally reversed for ease of comparison with Fig. $2 G$ and it demonstrates allmost conclusively the budding of the

first theca of the foranch from $t h n+1$ in the region of the aperture of $t h^{n}$. Thus each main stipe theca is dicalycal and gives aise to a laterail branch at $0.5-0.7 \mathrm{~mm}$ from its origin and to the next main stipe theca some $0.5-0.7 \mathrm{~mm}$ before its aperture. In such material in the rocks the true orientation of the various parts of the rhalbdosome with respect to each other is not always clear, but if the main stipe thecae of the second series all have the same dorso-ventral orientation (whilst changing their
direction of growth slightly) then the lateral branches are budded off alternately to the left and upwards and to the right and downwards (Fig. 2D, E). Those of the finst series bud off to the right and upwards and to the left and downwards (Fig. $1 E$ and Fig. 2A).

No pseudovirgulae have been observed in connection with lateral branches following the first pair and, bearing in mind the number of specimens arailable, it seems likely that they are restricted to the first pair. This is supported by the fact that later branchies do not seem. to have a solid black rod along their dorsal margins whilst the few possible growing ends are quite bluntly terminated projecting forwards ooly a little in the dorsal region.

Thecal spacing on the branches is usually of the order of 8 in 10 mm although a few specimens have been oibserved with as few as 5 in 10 mm (Fig. 3A, C). Thecal overlap on flattened specimens is difficult to see but it is clear from pyritized material (Fig. 3B) that overlap involves about half the ventral wall of each theca. It is also clear from such specimens that the thecal apertures of the lateral branch thecae (and probably allso the main stipe thecae) are relatively simple. The apparently denticulate nature is almost certainly introduced during flattening of the stipes, as is the increased dorso-ventral. width: whilst flattened branch fragments one up 0.4 mm wide, those in relief are about $0.25-0.3 \mathrm{~mm}$. With such a relatively high thecal overlap the first theca of each lateral branch must be shorter than subsequent thecae, which is the opposite of the situation usiually obtaining in cladia-bearing graptolite species. Most lateral branch thecae have a length of $1.5-1.7 \mathrm{~mm}$, except the first which may be only 1.2 mm long. Main stipe thecae, except th1 1^{1} and 1^{2} have a total length of the order of 2.6 mm and a free ventral wall of up to 2.0 mm .

Some bedding planes have specimens almost certainly referable to S. praecursor in which the tirst pair of lateral branches is pendant from the main stipes and the followting pair reclined. The writer has obtained none with pendant pseudovirgulae, and where pendant first and second lbranches are observed all the specimens

Fig. 2
Sigmagraptus praecursor Ruedemann, 1904
A - further growth of first series main stipe just before firstt lateral branch; Lauzon County, Colln. R. Bureau
B - firsst pair of lateral branches (br) growing allong pseudovirgula; first branch ahead of second in development; second pseudovirgula not preserved and thecae of main stipe broken affter 1^{1} and 1^{2}; same slab as Fig. 1E. Suggested course of thit in
front of sicula indicates by dashed lines
C - as B, but with main stipes ($m s$). preserved and lacking the usual zig-zag structrure; same slab as Fig. 1D
D - showing development of main stipe zig-zag and lateral branches; same locality as Fig. 1D, labelled R. B. R. 2.
E - more distbail thecae of zig-zag, and growth of lateral branches; locality $\mathbf{N} \mathbf{2 0 0}$, Lauzon County, J. R. and R. Bureau Colln.; ms, main stipe theca
F-formation of Iateral branoh fnom main stipe theca (ms); Trans-Canada Highway, chainage figure 48300 , Lévis, specimens in dolomitic rock; pendant, horizontal and reclined didymograptids at same locality and on same slab
$\boldsymbol{G} \& H$ - development of Jateral brainch from high angle burd; Lauzon County, R. Bureau Colln.; ms, main stipe thecae; br, latenal branch
on that bedding plane are the same. In other respects they are indistinguishable from "normal" specimens of S. praecursor.

Remarks. - The Quebec material closely resembles. the originals decribed by Ruedemann (1904) particularly in the shape of the rhabdosome, the length of the inbernodes with one lateral branch to each main stipe theca, the lateral branch thecal spacing and the idorso-ventral width of the stipes. Thecal overlap is about the same in both cases. Early growth stages and development and the nature of the sicula were not described by Ruedemann.

Fig. 3
Sigmagraptus praecursor Ruedemann, 1004
A \& B - thecae of ilateral branches, latter in pyrite in relief; same slabs as Fig. 2F
C - unusually widely spaced thecae possilbly of a lateral branch or of distail extremilty of a main stipe, apertural dip thickened; Locality N 200, Lauzon County, J. Riva and R. Bureau Coiln.

All figures are $\times 15$

Although the side branches of S. praecursor are technically lateral branches, their development is very similar to the dichotomous branching descruibed by Skevington (196i5) in the case of dichograptid sp. A, except that in the former each main. stipe theca is dicalycal and not merely the one involved in the branching. Dichograptid sp. A is shown diagrammatically by Buiman (1970, Fig. 64il); in this figure if the thecal aperture of thm is brought back to the point where th $(n+2) a$ arises from the $(n+1)$ then the situation is very alose to that in S. praecursor. Th(n+2)a would have to be shortened, and each "main stipe" theca be dicalycal, berore the exact praecursor, sititation was obtained. The similarity is such that it raises the whole question of the distinction between dichotomous branching and lateral branching.

Perhaps a closer comparison of branching can be made between S, praecursor: and Goniograptus sp. (Jaanusson 1965). The two genera have similar rhabdosomal plans, Gontograptus having four zig-zag stipes and Sigmagraptus two But the dichotomous ibranching in Jaanusson's material (the onily ones known in any detail) involve an accessory theca imterposed between each of the dicalycal main stipe theca. It is a strangely complex arrangement because if the accessory theca is (hyperthetically) removed (see Jaanusson 1965, Fig. 4) and the succeeding two thecae brough:t back to the preceding main stipe theca, then the development is exactily that in S. provecursor as described herein.

The foramehing in Gomiogitaptus sp, coulld be described either as dichotomous or lateral, and that in S. praecursor as lateral branching, but the latter is so close to the clearly dichotomous divisions in dichograptid sp. A that the distinction seems some what forced to the present writer.

At the distal extremities of the main stipes in "fuedemann's original specimens there is a number of thecae developed with no lateral bnanches. It.is possible that the widely spaced theeae mentioned above (Fig. 3C) are in reality from this part
of the rhabdosome: on the other hand some of these appear to have a black rod along the dorsall side of the stipe.

It remains to comment upon the function of the pair of pseudovirgellae. That they are not necessary for lateral branch growth is strongly suggested by the probable albsence of them on later branches. Therefore their main function must have been during the early growth of the colony (Fig. $1 B, D, E$ etc.). Naturally the long sicula, thecae and spines disposed in a letter W arrangement would facilitate buoyancy amd consequent transport by currents, and if the spines were solid rods unconnected with much thickness of living tissue the rhabdosome might well have drifted with the prosicula downwards and spines pendant. However, since the spines and nema were coated by a relatively extensive sheet of extrathecal tissue this may have prowided buoyancy in the form of vacuolated tissue and the rhabdosome could have drifted prosicula upwards: perhaps supporting this contention is that those rhabdosomes with pendant first pair of lateral branches (which would tend to keep the prosicula upwards) apparently dack pseudovirgulae. Subsequient development of the coolomies is complex amd clearly the necessitity for pseudiovirgullae, and even a nema is lost. On present knowledge one can only suggest that the mode of life changed in some manner, perhaps sllightly, from the early to the late growth stages.

Sedgwick Museum
Downing Street,
Cambridge CB2 3EQ, England
Cambridge, June 1973

REFERRENCES

BASSIERR R. 1915. Biliographic index of American Ordovictian and Silurian fossils. U. S. Nat. Mus., Bull, 92. New York.

BUIMIAN O. M. B. 1970. Graptolithina with sections on Enteropneusta and Pterobranchia. Treatise on Invertebrate Paleontology, Part V, 2nd Edit. Geol. Soc. Amer. \& Univ. Kansas Press. Lawtence. \mid
DEWEY J., RJCKARDS R. B. \& SKEVINGTON D. 1970. New light on the age of the Dairadian deformation and metamorphism in Western Ireland. - Norsk Geol. Tidisskr., 50. Oslo.
JAAINUSSON V. 1985. Two multiramous graptoloids from the Lower Didymograptus shaile of Scandinavia. - Geol. Foren. Forhandl., 86. Stockholm.
LAPWIORTH C. 1873. IOn an improved olassification of the Rhabdophora. - Geol. Mag., 10. London.

- 1880. On new British graptolites. - Ann. Mag. Nat. Hist., ser. 5, 5. London.

ROSS R. \& BERRI W. B. N. 1963. Ordovichan graptolites of he Basin Ranges in California; Nevada, Utah and Idaho, - U. S. Geol. Surv. Buill., 1134. New York.
RUPEDMMANN \mathbb{R}. 1902. Graptolite facies of the Beckmantown formation in Rensselaer County, N. Y. - N. Y. State Mus. Bull., 52. New York.

- 1904. Graptolites of New York. Part 1. - New York State Mus. Mem., 7. New York.
- 1947. Graptolites of North America, - Geol. Soc. Amer. Mem., 19. Baltimore.

SKEVIINGTON D. 1985. Graptolites from the Ontikan Limestones (Ordovictian) of Oland, Sweden. 11 Graptolodidea and Graptovermida. - Univ. Uppsala Bull. Geol. Inst., 43. Uppsala.

R. B. RICKARDS

POWIAZANIE PGEUDOVIRGULI Z LATERALNYM ODGAEPZIENIEM U GATUNKU DICHOGRAPTIDOW

(Streszczenie)

Na podstawie materialu spłaszczonego oraz zachowanego w reliefie pochodzacego z Quebecu (Kanada) podano opis i niektóre szczególy roziwoju Sigmagraptus praecursor Ruedemann. Wykazano, że wczesne stadia wzrostu kolonii posiadaja dhugą pseudoviṛgule, rozwijającą się po stronie dorso-latenalnej apertur thil ${ }^{1}$ ith1, wzdhuz̀ ktorej wzrasta w górę pierwsza para lateralnych odgałęzieñ. Sigmağraptus praecursor Ruedemann wykazuje rozwbj dichograptidowy; th1 ${ }^{2}$ tworzy pojedynczy kanal i rozwija się z th 1^{1}, która bierze prawdopodolbmie swój początelk od prosiculi. Pseudovirgula i jej powiq̨zanie z lateralnym odgałęzieniem nie była dotychezas znana wónrod ordowickich graptolitów. Sugeruje się, że pseudovingula mogka bye pomocna pazy statecznoseci, stalbilnosci i orientacji wczesnych stadiow wzrostu kolondi.

Muzeum Sedgwicka Downing Street
Cambridge CB2 3EQ, Amglia
Cambridge, w čerwcu 1973 r.

[^0]: 1902. Conenograptid gen. nov. et sp. nov.; Ruedemarnn, p. E86.
 1903. Stgmagraptus praecursor sip. nov.; Ruedemanm, p. 702, Text-ilg. 98; P1. 5, Figs 1s-14.
 1904. Stgmagraptus praecursor Ruedemanm; Bassler, pp. 115s-1159.
 1905. Slgmagraptus praecursor Ruedemann; Ruedemann, p. 300, P1. 49, Figs 17-20.
 1906. Slgmagraptus praecursor Ruedemann; Bulmam, p. vil2, Fig. T7.5.
 ?1970. Stgmagraptus aff. S. praecursor Ruedemann; Dewey \& al., p. il.
 Holotype: qpeoimen Eigured by Ruedemann, 1904, Pl. 5, Figs 18-14 and again 19y7, Pl. 49, Fig. 18,
