Ontogenetic and intraspecific variation in the late Emsian – Eifelian (Devonian) conodonts Polygnathus serotinus and P. bultyncki in the Prague Basin (Czech Republic) and Nevada (western U.S.)

GILBERT KLAPPER1 AND STANISLAVA VODRÁŽKOVÁ2

1Gilbert Klapper, Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA. E-mail: g-klapper@northwestern.edu
2Stanislava Vodrážková, GeoZentrum Nordbayern, Fachgruppe Paläowelt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, Erlangen, Germany and Czech Geological Survey, P.O.B. 85, 118 21 Prague 1, Czech Republic. E-mail: stana.vodrazkova@seznam.cz

ABSTRACT:

Samples from populations of Polygnathus serotinus Telford 1975 and P. bultyncki Weddige 1977 from the Prague Basin and Nevada display normal variation for Devonian conodont species. A considerable number of previous authors, however, have proposed unnecessary synonyms of these two species, primarily because they have not recognized ontogenetic variation. In contrast, we interpret the variation as ontogenetic as well as intraspecific and present detailed synonymies as a result. A third species, P. praetrigonicus Bardashev 1992, which has been carried in open nomenclature for many years, is an important indicator of the basal costatus Zone in the Prague Basin, New York, and Nevada. We review the stratigraphic distribution of these three species and the conodont zonation across the Emsian-Eifelian (Lower-Middle Devonian) boundary. Polygnathus pseudocostatus sp. nov. (partitus-costatus zones, central Nevada) is described herein. We have observed a decrease in the pit size during ontogeny in P. bultyncki although we have not measured enough specimens to rule out intraspecific versus ontogenetic variation.

Key Words: Devonian; Emsian-Eifelian conodont zonation; Ontogenetic and intraspecific variation; Taxonomic revision.

INTRODUCTION

In what must be regarded as a seminal paper, Hass (1941) described the accretionary mode of growth of the lamellar microstructure of conodonts and concluded that “species of conodonts are quite variable entities, the individual changing greatly in ontogenetic development.” The significance of ontogenetic variation for conodont taxonomy has been sporadically supported (e.g., Müller 1956; Scott and Collinson 1959, who, however, focused their paper mainly on intraspecific variation; and Dzik 2006). It is fair to say, nevertheless, that ontogenetic series of conodont species have only infrequently been presented (some examples are in papers by Müller and...
Clark 1967; Sandberg and Ziegler 1973; Dzik 2002, 2006; Miller 2007). The reason for this may be that a microfossil collection is not always encountered from which an ontogenetic series can be reconstructed based on specimens that each represent a single growth stage. It is thus not surprising that supposedly new conodont species have been proposed by authors who have not taken ontogenetic variation into consideration.

On the subject of ontogeny in an overview of palaeontological taxonomy, Forey et al. (2004, p. 645) wrote: “Palaeontologists, in general, are hampered by the lack of knowledge of ontogenetic variation. Growth stages of individual taxa have received separate names, which may spuriously increase apparent diversity.” . . “but the problem is far more acute in the fossil record and can only be solved by fortuitous finds.” However, study of micropalaeontological collections that yield either a single species of one genus or just two species of distinctly different morphology may potentially allow more frequent reconstruction of ontogenetic series than is generally possible with macrofossils. That is, we are referring to those macrofossils in which single specimens do not preserve the record of ontogeny, as opposed, for example, to single specimens of ammonoids which may do so.

In his general paper on conodont taxonomy, Müller (1956, p. 1331) discussed intraspecific variation within a population in addition to ontogenetic variation. As a result of the recognition of these two types of variation, he advocated acceptance of a broad concept for species. One of the best examples of intraspecific variation within the platform (Pa) element of a conodont species is the study of Koike (1992) on the Early Triassic Spathoicriodus collinsoni (Solien, 1979, p. 302–303). The amount of intraspecific variation within this species as illustrated by Koike (1992, text-figs 9, 12, 13) is highly instructive. Unfortunately in our opinion, this example and the implications derived from it have not influenced much current taxonomic practice.

In this paper we focus on two Lower-Middle Devonian (late Emsian-Eifelian) species, Polygnathus serotinus Telford 1975, and Polygnathus bultyncki Weddige 1977. The high abundances of each species in restricted stratigraphic intervals and in the same samples allowed us to recognize the different morphological forms, corresponding to different ontogenetic stages. As our synonymy lists indicate, nine different names have been applied to P. serotinus and six to P. bultyncki. These names refer either to early ontogenetic stages or to intraspecific variants of mature stages of the two species. The importance of recognizing both kinds of variation not only for a reasonable taxonomy but also for diversity studies is clearly apparent.

Polygnathus serotinus was named by Telford (1975, as a subspecies of P. foveolatus Philip and Jackson 1967) based on specimens from the Broken River Embayment in north Queensland, Australia. Telford (1975, p. 43–44, pl. 7, figs 1–8) illustrated an ontogenetic series of specimens, the largest of which was the holotype. A few months later, Snigireva (1975; her paper was presumably in press when Telford’s paper was published in July) proposed two new species, Polygnathus foliformis and P. totensis. Both Weddige (1977) and Klapper (1977) independently recognized that the illustrated specimens of P. totensis (Snigireva 1975, pl. 4, figs 3, 4) represent a slightly earlier ontogenetic stage of P. serotinus and raised that taxon to specific status. This opinion was followed by several later authors who also treated P. totensis as a junior synonym (see Remarks under P. serotinus). Weddige (1977, p. 319) further questioned whether P. foliformis might be an additional junior synonym. Several later authors (see Synonymy under P. serotinus) have recognized P. foliformis as a valid species, but this cannot be supported in the light of ontogenetic evidence. As a result of the research presented herein, we conclude that the types of P. foliformis (Snigireva 1975, pl. 4, figs 1, 2) represent an early ontogenetic stage of P. serotinus and that those of P. totensis represent a later ontogenetic stage approaching maturity.

Bardashev et al. (2002) recognized six separate species that are here considered as intraspecific variants of Polygnathus serotinus (five of which were newly proposed in their paper in addition to P. declinatus Wang 1979); all were based on mature Pa elements reillustrated from previous literature without illustrating any new material of their own. They further recognized P. foliformis and P. totensis as valid species, but these are ontogenetic variants of P. serotinus as concluded above. These nine named species are allocated to three genera in the taxonomy proposed by Bardashev et al. (2002).

In another instance, these same authors recognized four separate species allocated to two genera, which again are either intraspecific or ontogenetic variants of the equally well known Emsian-Eifelian species Polygnathus bulbyncki Weddige 1977. Details are given under these two species in the Systematic Palaeontology section.

Bardashev et al. (2002) have not recognized intraspecific and ontogenetic variation in their taxonomy. The artificiality of their splitting of the genus Polygnathus into seven genera is in question, at least insofar as several of the genera share intraspecific variants of the same species. Substantial criticism of the Bardashev et al. (2002) paper on these and other grounds has been detailed by Mawson and Talent (2003, p. 344–346), Murphy (2005, p. 191–193), and Slavík et al. (2007, p. 500).
In this paper in addition to the two main cited species, we also describe and discuss *Polygnathus pseudocostatus* sp. nov. and *P. praetrigonicus* Bardashev 1992 (both Middle Devonian, Eifelian) and their biostratigraphic significance.

ONTOGONY OF PIT IN *POLYGNATHUS BULTYNCKI*

Juvenile specimens of *Polygnathus bultyncki* are characterized by a relatively large basal pit (Text-fig. 1A, B), whereas adult specimens (Text-fig. 1E) possess a much smaller pit, apparently indicating a decrease in pit size during ontogeny. This is also supported by measurements of 23 specimens in our material representing various growth stages, showing enlargement of the pit in early growth stages and a subsequent decrease in later stages. However, the number of specimens measured is not large enough in our opinion to rule out intraspecific variability as a cause of the apparent decrease in pit size. A larger number of specimens should be measured to test: (1) whether the pit stopped enlarging at a certain point in the early growth stages and subsequently decreased in size in later stages, during which the platform continued to increase in size, or (2) whether the pit ceased to enlarge at a certain point and remained unchanged in size while the platform continued to enlarge in later stages, as suggested by Clark and Müller (1968, p. 564). As a full biometric study is beyond the scope of the present paper, we leave this question open. It should be noted however, that confirmation of the first hypothesis would have implications for the mode of formation of the “inverted cavity” (Lindström 1964; Lindström and Ziegler 1971), termed a “zone of recessive basal margin” (Sweet 1981, p. W9; Sweet 1988, text-figs 2.1, 2.5), or an “everted” basal cavity (von Bitter 1988, text-fig. 1).

BIOSTRATIGRAPHY

Upper Emsian–Lower Eifelian conodont zonation

The conodont zonation across the Lower (Emsian)–Middle Devonian (Eifelian) boundary was established in a series of papers in the 1970s. The *serotinus, patulus*, and *costatus costatus* zones were proposed formally by Weddige (1977) based primarily on the sequence in the Eifel Mountains, Germany, but with reference to successions elsewhere (e.g., the Ardennes, Bultync 1970; New York, Klapper 1971; among others, see Weddige 1977, table 3). Note that once the *costatus* Zone was dropped as a name for an upper Famenian standard conodont zone (Ziegler and Sandberg 1984), the Eifelian zone came to be termed simply the *costatus Zone* (Johnson et al. 1986, p. 179). Weddige (1977, table 2) recognized lower and upper informal subdivisions of the *patulus* Zone and Klapper et al. (1978, text-fig. 3) strengthened this with the finding of the first occurrence of their new subspecies, *P. costatus partitus*, at the base of the upper *patulus* Zone in the Prague Basin (*P. patulus, P. partitus*, and *P. costatus* were established as separate species by Vodrážková et al. (2011)). Weddige et al. (1979) proposed the *partitus* Zone for the informal upper *patulus* Zone and the *patulus* Zone thus became restricted to the equivalent of the informal lower *patulus* Zone. This usage is still followed.

The first occurrence of *P. partitus*, and consequently the base of the *partitus* Zone, were accepted as the defining level for the Lower (Emsian)–Middle Devonian (Eifelian) boundary by the International Commission on Stratigraphy in 1982 (Cowie et al. 1989, p. 81). The boundary stratotype was selected at the Wettdorf Richtschnitt, Prüm Syncline, Eifel Mountains (Ziegler and Klapper 1982, p. 9; Weddige 1982) and the Prastav Quarry, Holyně in the Prague Basin was designated as the parastratotype section (Chlupáč 1982, p. 89; Berkyová 2009, p. 668, text-fig. 2).

Polygnathus serotinus and *P. bultyncki* have first occurrences in the *serotinus* Zone, the former as the defining species for the lower boundary of the zone, but both range as high as the *costatus* Zone (e.g., Johnson et al. 1996, table 2; Berkyová 2009, text-fig. 2B). Similarly *P. patulus* and *P. partitus*, each defining species for the lower boundary of their respective zones, both range as high as the *costatus* Zone. Thus as opposed to spot samples having one or more of these four named species, it is necessary instead to have a detailed sequence of closely spaced samples through several zones for confident zonal identification.

Stratigraphic distribution of *Polygnathus serotinus* and *P. praetrigonicus*

Polygnathus serotinus represents the most common species of the *serotinus, patulus*, and *partitus* zones in the Prague Basin (Daleje-Třebotov Formation). Klapper et al. (1978, text-fig. 1) recorded the highest occurrence of *P. serotinus* in the basal *costatus* Zone (Choteč Limestone at Chýnice) and Berkyová (2009, text-fig. 2B) showed the highest occurrence at the same zonal level but near the top of the Třebotov Limestone at the Barrandov road cut. There is a flood occurrence of juvenile specimens of *P. serotinus* associated with *P.*
praetrigonicus at 0.10 m above the base of the Acanthopyge Limestone at the Red Quarry (Červený Lom) near Suchomasty (collected by GK with Ivo Chlupáč in 1974 and identified by GK and SV in 2008). At other sections in the Prague Basin, the highest occurrence of this species is in the partitus Zone (e.g., Prastav Quarry, Klapper et al. 1978, text-fig. 1; Berkyová 2009, text-fig. 2A) in the upper part of the Třebotov Limestone.

In the Eifel Mountains (Weddige 1977, tables 2, 5; Weddige 1982, text-fig. 3a) Polygnathus serotinus ranges to the top of the patulus Zone at the Wetteldorf Richtschnitt, but into the lower costatus Zone at adjacent

Text-fig. 1. Ontogenetic series of Polygnathus bulbyncki Weddige; all specimens are Pa elements from the Prague Basin. A1, A2 – upper and lower views of SB 27, 1550 cm below the base of the Choteč Limestone, Jelinek mill quarry at Chýnice, serotinus Zone. B1, B2 – upper and lower views of SB 28, 460 cm below the base of the Choteč Limestone, Jelinek mill quarry at Chýnice, lowermost partitus Zone. C1, C2 – lower and upper views of SB 29, 960 cm below the base of the Choteč Limestone, Jelinek mill quarry at Chýnice, serotinus Zone. D1, D2 – upper and lower views of SB 30, 450 cm below the base of the Choteč Limestone, Na Škrábku quarry at Choteč, patulus Zone. E1, E2 – upper and lower views of SB 31, 960 cm below the base of the Choteč Limestone, Barrandov road cut at Prague, serotinus Zone. F1, F2 – lower and upper views of SB 32, 960 cm below the base of the Choteč Limestone, Barrandov road cut at Prague, serotinus Zone. All magnifications are × 46
sections (Weddige 1982, text-fig. 3b). In the Anti-Atlas Mountains of southern Morocco, the species occurs in the *serotinus* and *patulus* zones, but apparently not higher (Bultynck 1986, text-figs 5, 6, 8, 11, 12). However, in the Anti-Atlas regional composite developed through graphic correlation, *P. serotinus* ranges from the *serotinus* Zone into the lower part of the *partitus* Zone (Belka et al. 1997, text-fig. 3).

The highest occurrence of *Polygnathus serotinus* in the northern Antelope Range, central Nevada, is in the basal *costatus* Zone (Johnson et al. 1996, section V, table 2, seven samples in the lower 2.6 m of the zone). This is closely comparable to the highest occurrence noted above for the Prague Basin. But the species ranges higher in the *costatus* Zone in the Roberts Mountains of central Nevada (Vodrážková et al. 2011, p. 741, text-fig. 3, appendix 3). Note that in section V of the northern Antelope Range the *patulus* Zone is missing, whereas in the Roberts Mountains both the *patulus* and the *partitus* zones are missing (Vodrážková et al. 2011, p. 739–741).

Pyle et al. (2003, p. 103–104, text-fig. 5) reported occurrences of *Polygnathus serotinus* relatively high within the *costatus* Zone in the Deserters Formation in British Columbia. The anomalous occurrences of *P. linguiformis linguiformis* recorded from the *serotinus* and *costatus* zones in the Deserters Formation are perhaps explained by the fact that the one illustrated specimen is identified herein as *P. bultyncki* (see systematic description and synonymy for that species). The reported occurrences of *P. serotinus* in the lower part of the *australis* Zone in Central Asia (Bardashev 1990, p. 34; 1992, p. 46, 47) also seem anomalous. It is possible that these high occurrences represent *P. dobrogensis* Mirăuţă (1971), a species discussed by Weddige (1977, p. 319–320, text-fig. 4) under *P. serotinus*.

Polygnathus serotinus is not present in the Schoharie-Onondaga succession of New York, where the Schoharie-Bois Blanc and the Edgecliff Member, the lowest member of the Onondaga Limestone, are entirely in the *Icriodus* biofacies lacking all species of *Polygnathus* (Klapper 1981, p. 58–59). Although the evidence is tenuous at best as it is based only on the occurrence of *Icriodus latericrescens robustus*, the Schoharie-Bois Blanc may represent the *serotinus* Zone and the Edgecliff, either the *patulus* Zone or the lower part of the *partitus* Zone, because the base of the overlying Nedrow Member is within the *partitus* Zone (Klapper and Oliver 1995, p. 1072).

Polygnathus praetrigonicus Bardashev 1992 (= *P. aff. P. trigonicus* Bischoff and Ziegler sensu Klapper 1971, and later authors, see synonymy) was first described from what is now recognized as the basal *costatus* Zone in the New York succession. This occurrence is in the uppermost part of the Moorehouse Member and in the overlying Seneca Member of the Onondaga Limestone (Klapper 1971, tables 3, 4). However, in that paper an anomalously low occurrence of three specimens of *P. costatus* was reported well below the Moorehouse Member in the upper part of the underlying Nedrow Member at one locality (Klapper 1971, table 1) and well below abundant occurrences of *P. costatus* in the Seneca Member at the top of the Onondaga. Restudy of these Nedrow specimens in 2011 demonstrated, however, that they do not belong to either *P. costatus* or *P. partitus*. The latter species does occur at the base of the Nedrow Member as mentioned previously, meaning that the whole of the Nedrow is within the *partitus* Zone.

The lowest occurrence of *Polygnathus praetrigonicus* in the Prague Basin is in the basal *costatus* Zone with the nominal species of the zone in the lower part of the Choteč Limestone at Chýnice and the Barrandov road cut (Berkyová 2009, text-figs 4B, 2B). Klapper et al. (1978, text-fig. 1) reported the same association of these two species in the lower Choteč at Chýnice, but in the same study *P. praetrigonicus* occurs without *P. costatus* in the lower Choteč at the Prastav quarry and the correlative part of the *Acanthopyge* Limestone at the...
Red Quarry near Suchomasty. These lowest occurrences of *P. praetrigonicus* may be taken as a working hypothesis to represent the basal *costatus* Zone in the Prague Basin as they do in the New York succession. In the northern Antelope Range, central Nevada, *P. praetrigonicus* ranges from the uppermost part of the *partitus* Zone into the basal *costatus* Zone. This was not reported in Johnson et al. (1996, section V, table 2), but nonetheless *P. praetrigonicus* occurs in three samples: VH 16 and 17 in the uppermost *partitus* Zone and VG25 in the basal *costatus* Zone. Bardashev (1992, p. 57) also reported this species from the *partitus* and *costatus* zones in Central Asia. Other geographic occurrences of *P. praetrigonicus* are in less constrained parts of the *costatus* Zone (see synonymy). For generalized stratigraphic ranges of *Polygnathus serotinus*, *P. hultyncki*, and *P. praetrigonicus* see Text-fig. 2.

SYSTEMATIC PALAEONTOLOGY

The extent of the posterior carina is a matter of intra-specific variation within both *Polygnathus pseudo-costatus* sp. nov. and *P. angusticostatus* Wittekindt (see especially Sparling 1981, pl. 1, figs 11, 14, 17, 22, 23). This also obtains iteratively in other species of *Polygnathus* throughout its evolutionary history. The genus *Ctenopolygnathus* Müller and Müller (1957, p. 1084) was based solely on the carina extending beyond the main part of the posterior platform in the Pa element. After their paper, this genus was treated as a junior synonym of *Polygnathus* by most authors. Yet *Ctenopolygnathus* was revived by Bardashev et al. (2002, p. 412) apparently unaware that this minor morphologic character supposedly diagnostic of the genus proves to be either present or absent as a result of intra-specific variation.

In the text-figure explanations, specimens labeled SB are housed in the Czech Geological Survey, Prague, and those labeled SUI are in the collections at the University of Iowa, Iowa City.

Polygnathus serotinus Telford 1975
(Text-figs 3A–G, 4A–H, 5A–F)

1974. *Polygnathus perbonus* new subspecies D. Perry, Klapper, and Lenz, 1089, 1091, pl. 8, figs 9–13, 15, 16.

1975. *Polygnathus foveolatus serotinus* subs. nov. Telford, 43–44, pl. 7, figs 1–8 [figs 5, 6 = holotype].

1975. *Polygnathus* sp. nov. D. Klapper and Johnson, 74–75, pl. 3, figs 1, 2, 8–10.

1975. *Polygnathus foliformis* sp. nov. Snigireva, 26, pl. 4, figs 1, 2.

1975. *Polygnathus totensis* sp. nov. Snigireva, 27, pl. 4, figs 3, 4.

1976. *Polygnathus serotinus* Telford; Bultynck, 63–64, pl. 10, fig. 23; pl. 11, fig. 21.

1977. *Polygnathus serotinus* Telford; Weddige, 319–320, pl. 4, figs 77–79; text-fig. 4, no. 34.

1977. *Polygnathus serotinus* Telford; Klapper, 495–496, *Polygnathus* pl. 9, figs 4, 5 [fig. 5 = reillustration of holotype].

1978. *Polygnathus serotinus* Telford; Apekina and Mashkova, 46, pl. 76, fig. 9, pl. 77, figs 1, 2, 6.

1978. *Polygnathus foliformis* Snigireva; Apekina and Mashkova, 47, pl. 77, fig. 7, pl. 78, figs 1, 4, 7, 10.

1979. *Polygnathus serotinus* Telford; Lane and Ormiston, 63, pl. 8, figs 2, 6, 8–10, 13–16, 19–22, 32–35 [not pl. 7, figs 13, 37 = *P. inversus* transitional with *P. serotinus*].

1979. *Polygnathus serotinus* Telford; Lane, Müller, and Ziegler, 220, pl. 5, figs 5, 6, 20, 21.

1980. *Polygnathus serotinus* Telford; Bultynck and Hollard, 45, pl. 2, figs 8, 12, 13.

1982. *Polygnathus serotinus* Telford; Weddige, 34, pl. 1, fig. 12.

1983. *Polygnathus serotinus* Telford; Wang and Ziegler, 102, pl. 6, figs 16–18.

1984. *Polygnathus serotinus* Telford; Apekina, 85, pl. 22, fig. 11.

1984. *Polygnathus foliformis* Snigireva; Apekina, 81, pl. 22, fig. 3.

1985. *Polygnathus serotinus* Telford; Austin et al., 140, pl. 4.2, figs 12, 13.

1985. *Polygnathus serotinus* Telford; Schönlaub In: Feist, Schönlaub, and Bultynck, 94, pl. 2, figs 14, 15.
1986. *Polygnathus serotinus* Telford; Ziegler and Wang, 30, pl. 1, figs 9, 10.
1986. *Polygnathus serotinus* Telford; Bardashev and Ziegler, 74, pl. 1, fig. 17.
1986. *Polygnathus serotinus* Telford; Bultynck, 278, 280, pl. 6, figs 3, 4 [not pl. 5, figs 17, 18 = ? *P. inversus* transitional with *P. serotinus*].

[not] 1987a. *Polygnathus serotinus* Telford ‘*delta morphotype*’ of Lane and Ormiston; Mawson, 278, 280, 282, pl. 33, figs 9–12; pl. 36, fig. 10 [= *P. serotinus* transitional with *P. serotinus*].
1987b. *Polygnathus serotinus* Telford gamma morph of Lane and Ormiston; Mawson, 261, pl. 2, figs 12, 13.
1987b. *Polygnathus serotinus* Telford delta morph of Lane and Ormiston; Mawson, 261, pl. 2, figs 1–10.
1989. *Polygnathus serotinus* Telford; Mawson and Talent, 248, pl. 3, figs 1, 2.
1990. *Polygnathus serotinus* Telford; Uyeno, 86, pl. 7, figs 13, 14, pl. 9, figs 21, 22, 34, 35 [see for additional synonymy].
1990. *Polygnathus serotinus* Telford; Bardashev, 77, 79, pl. 2, fig. 3; pl. 6, fig. 6.
1992. *Polygnathus quadratus* Klapper, Ziegler, and Mashkova; Bončeva, 41, pl. 6, figs 1–3 [= juvenile *P. serotinus*, not fig. 4 = *P. quadratus*].
[?] 1992. *Polygnathus falcatus* sp. n. Bončeva, 42, pl. 5, figs. 1, 2 [not fig. 3 = ? *P. serotinus* transitional with *P. serotinus*].
1992. *Polygnathus serotinus* Telford; Bardashev and Ziegler, 28, pl. 6, figs 12, 16, 17.
2002. *Ctenopolygnathus totensis* (Snigireva); Bardashev, Weddige, and Ziegler, 414, text-fig. 13, no. 22.

2002. *Ctenopolygnathus foliformis* (Snigireva); Bardashev, Weddige, and Ziegler, 412–413, text-fig. 13, no. 23.
2002. *Costapolygnathus schenkae* sp. nov. Bardashev, Weddige, and Ziegler, 417, text-fig. 14, no. 27.
2002. *Linguipolygnathus serotinus* (Telford); Bardashev, Weddige, and Ziegler, 424–425, text-fig. 15, no 32 [= reillustration of holotype].
2002. *Linguipolygnathus declinatus* (Wang); Bardashev, Weddige, and Ziegler, 422, text-fig. 15, no 33 [reillustration of holotype].
2009. *Polygnathus serotinus* Telford; Berkyova, 682, fig. 8 J.
2010. *Polygnathus serotinus* Telford; Meço, 180, pl. 2, figs 12, 17; pl. 3, figs 2, 4, 5, 8–11, 13, 15 [not fig. 7 = *P. bultyncki*].

MATERIAL: 270 specimens from the Prague Basin (for distributions see Berkyova 2009, figs 2–4). 2615 specimens were counted from 163 faunal slides from the northern Antelope Range, central Nevada. The 32 samples containing *P. serotinus* are listed in Johnson et al. 1996, section V, table 2. It was considered unnecessary to count an additional 116 slides from many of the same samples. Also, the northern Hot Creek Range samples were not counted for this species.

DIAGNOSIS: Representative Pa elements have a small pit located just anterior of the sharp inward deflection of the keel. A small, subcircular, shelf-like protuberance occurs on the outer side of the pit in mature specimens. Cavity entirely inverted posterior of pit. Flange-like anterior outer margin is distinctly higher than carina and inner margin, and separated from carina by a wide, deep adcarinal trough.

REMARKS: The distinctive shelf-like protuberance in combination with the small pit in mature Pa elements distinguishes *Polygnathus serotinus* from other species.
of the genus. In ontogenetically small specimens of the species, however, the protuberance is characteristically not developed but is incipiently represented by a small flattening of the keel just posterior of the pit on the outer side. A complete gradation from this minor flattening of the keel in immature specimens to full development of the distinct protuberance in mature specimens has been observed in our material and in illustrations in the literature (well shown in Xiong 1980, pl. 25, figs 1–28 and in Bai 1994, pl. 17, figs 1–8). The immature specimens have been treated by several authors as separate species, Polygnathus foliformis and P. totensis, both proposed by Snigireva (1975, see synonymy), but Weddige (1977), Klapper (1977), Pickett (1978, p. 102), Klapper and Johnson (1980) and Mawson (1987a) recognized that P. totensis represents immature specimens of P. serotinus. Also, Lane and Ormiston (1979, pl. 8, figs 13–16, 19–22) included small, immature specimens, closely comparable to the types of P. foliformis, together with mature Pa elements within their morphotype gamma of P. serotinus. It is worth noting that Telford (1975, pl. 7, figs 1–4, 7, 8) included immature specimens like those of P. foliformis and P. totensis in his original concept of P. serotinus. In fact the only mature specimen he illustrated (Telford, pl. 7, figs 5, 6) was the holotype, but this has largely been ignored by later authors. Thus, it is clear that P. foliformis and P. totensis are best considered as immature ontogenetic stages of the Pa element of P. serotinus.

We recognize three informal morphotypes of Polygnathus serotinus, based on the character of the shelf-like protuberance on the outer side of the pit. In morphotype 1 the outer margin of the protuberance is sigmoidal in shape because of a small sinus (Text-fig. 3), whereas it is characteristically subcircular in morphotype 2 (Text-fig. 4), as in the holotype. Morphotype 3 (Text-fig. 5) has a protuberance that narrows and extends farther to the posterior end of the platform than in the other morphotypes, without a sinus as in Morphotype 1. The first two morphotypes are the most common, represented by several tens of specimens in the Prague Basin. These distinctive protuberances represent stable features during growth of the elements, although other features such as platform shape and formation of the tongue change substantially during ontogeny. This is also the reason why different growth stages of P. serotinus have been recognized as different species. Polygnathus foliformis represents an early ontogenetic stage with a broader and rounder shape of the platform and a more anteriorly situated pit. Polygnathus totensis represents a somewhat later ontogenetic stage, wherein the pit is situated more posteriorly and the platform is more elongated.

The different types of protuberances are stable and therefore distinguishable at all growth stages observed and as such have taxonomic value, which could allow us to treat it as a character at the subspecific level. However, all the types of the recorded protuberances are associated both geographically and stratigraphically in the Prague Basin, which is the main reason why we interpret them as intraspecific variants. We designate them as informal morphotypes only for clarity in the description, as the morphotypes have no biostratigraphic utility.

As mentioned above, the subcircular type of protuberance (morphotype 2) occurs in the holotype (also in morphotype delta of Lane and Ormiston 1979), whereas the sigmoidal protuberance (morphotype 1) has not been recognized by us in the literature so far, except for specimens illustrated by Mawson (1987b, pl. 2, figs 10 and 12 (identified by her as P. serotinus delta and gamma morphs sensu Lane and Ormiston 1979). Morphotype 3 may be represented by a specimen figured by Bončeva (1992, pl. 5, fig. 2) and named as P. falcatus. However, the quality of the photograph does not permit a certain identification.

There are specimens that are considered intermediate between Polygnathus inversus Klapper and Johnson and P. serotinus (for example, Klapper and Johnson 1975, p. 73, pl. 3, figs 19–22, 24–31; Uyeno and Klapper 1980, pl. 8.1, figs 13–16). Alternately, these were treated as an early morphotype of P. serotinus by Lane and Ormiston (1979, p. 63, pl. 7, figs 13, 37), their alpha morphotype. All of these “have an incipient development of a shelf-like protuberance on the outer side of the pit, but the protuberance characteristic of P. serotinus is more distinctly demarcated and smaller... Furthermore, the pit itself in P. serotinus is smaller than in the transitional form” (Uyeno and Klapper 1980, p. 89). The anterior outer margin is at more or less the same height as the inner margin and a flange-like outer margin is not developed in the transitional forms. There are additional specimens illustrated in the literature that fit this category, as well as others that are questionably related to these transitional forms, as indicated in the synonymy list.
Text-fig. 4. *Polygnathus serotinus* Telford, morphotype 2; all specimens are Pa elements from the Prague Basin.

A1, A2 – lower and upper views of SB 13, 160 cm below the base of the Choteč Limestone, Prastav quarry, *partitus* Zone, × 175.

B1, B2 – lower and upper views of SB 22, 160 cm below the base of the Choteč Limestone, Prastav quarry, *partitus* Zone, × 190.

C – lower view of SB 23, 460 cm below the base of the Choteč Limestone, Jelinek mill quarry at Chýnice, lowermost *partitus* Zone, × 122.

D1, D2 – upper and lower views of SB 24, 160 cm below the base of the Choteč Limestone, Prastav quarry, *partitus* Zone, × 190.

E1, E2 – upper and lower views of SB 25, 1060 cm below the base of the Choteč Limestone, Jelinek mill quarry at Chýnice, *serotinus* Zone, × 146.

F1, F2 – upper and lower views of SB 26, 960 cm below the base of the Choteč Limestone, Jelinek mill quarry at Chýnice, *serotinus* Zone, × 136.

Text-fig. 5. *Polygnathus serotinus* Telford, morphotype 3; all specimens are Pa elements from the Prague Basin.

A1, A2 – lower and upper views of SB 21, 330 cm below the base of the Choteč Limestone, Prastav quarry, *partitus* Zone, × 175.

B1, B2 – lower and upper views of SB 22, 160 cm below the base of the Choteč Limestone, Prastav quarry, *partitus* Zone, × 190.

C – lower view of SB 23, 460 cm below the base of the Choteč Limestone, Jelinek mill quarry at Chýnice, lowermost *partitus* Zone, × 122.

D1, D2 – upper and lower views of SB 24, 160 cm below the base of the Choteč Limestone, Prastav quarry, *partitus* Zone, × 190.

E1, E2 – upper and lower views of SB 25, 1060 cm below the base of the Choteč Limestone, Jelinek mill quarry at Chýnice, *serotinus* Zone, × 146.

F1, F2 – upper and lower views of SB 26, 960 cm below the base of the Choteč Limestone, Jelinek mill quarry at Chýnice, *serotinus* Zone, × 136.
As mentioned in the introduction to this paper and as expressed in the synonymy list, Bardashev et al. (2002) recognized nine species, which we regard as conspecific and which they allocated to three different genera in their taxonomy. Seven of these are minor infraspecific variants of the mature Pa element of *P. serotinus*, all of which have the diagnostic protuberance adjacent to the small pit, as well as the same platform outline and the flange-like outer anterior margin. The other two are those based on early ontogenetic stages of the Pa element of the same species, as discussed above.

Polygnathus karadjalis Vorontsova and Kuz’mín (1984, see Mawson and Talent 1997, p. 216, 218, fig. 15, no. 15–24) is a Famennian homeomorph of *P. serotinus*, which differs by lacking the diagnostic protuberance adjacent to the pit and in having a distinctive arrow-shaped structure anterior of the pit.

RANGE: Lower boundary of *serotinus* Zone (by definition) to the lower *costatus* Zone (see discussion under Biostratigraphy section).

Polygnathus bultyncki Weddige, 1977
(Text figs 1A–F, 6A–F)

1956. *Polygnathus linguiformis* Hinde; Ziegler, 103–104, pl. 7, figs 15–18 [not figs 11, 12, 19, 20 = *P. inversus* Klapper and Johnson, 1975].

1977. *Polygnathus linguiformis linguiformis* Hinde alpha morphotype Bultynck; Klapper, 462, 492, *Polygnathus* – pl. 9, figs 6, 8 [= reillustration of Bultynck, 1970, pl. 9, figs 2, 1].

1977. *Polygnathus linguiformis bultyncki* n. ssp. Weddige, 313–314, pl. 5, figs 90–92 [fig. 91 = holotype]; text-fig. 4, no.20.

1978. *Polygnathus linguiformis* Hinde alpha forma (Bultynck) [sic]; Apekina and Mashkova, 47, pl. 77, figs 4, 5, 10 [not fig. 8 = *P. cracens* Klapper, Ziegler, and Mashkova, 1978].

1978. *Polygnathus linguiformis bultyncki* Weddige; Apekina and Mashkova, 47, pl. 78, figs 5, 6 [see Remarks].

1978. *Polygnathus kimi* sp. nov. Apekina and Mashkova, 47, pl. 78, figs 2, 3, 9 [nomen nudum].

1979. *Polygnathus linguiformis bultyncki* Weddige; Lane and Ormiston, 84, 86, pl. 7, figs 1, 2, 34, 38, 39; pl. 8, figs 11, 12, 23, 24.

1979. *Polygnathus linguiformis bultyncki* Weddige; Lane, Müller, and Ziegler, 222, pl. 1, fig. 22.

1980. *Polygnathus linguiformis bultyncki* Weddige; Xiong, 94, pl. 27, figs 6, 7.

1980. *Polygnathus cf. linguiformis* alpha morphotype Bultynck; Xiong, 94, pl. 27, figs 18, 19.

1980. *Polygnathus hanshanensis* sp. nov. Xiong, 93, pl. 27, figs 12–17, text-fig. 54.

1980. *Polygnathus hanshanensis obovatus* subsp. nov. Xiong, 93, pl. 27, figs 26, 27.

1980. *Polygnathus najiaoensis* sp. nov. Xiong, 95–96, pl. 27, figs 20–23, text-fig. 55.

1981. *Polygnathus kimi* sp. nov. Mashkova and Apekina, 146–147, text-fig. 1, figs a–p.

1981. *Polygnathus najiaoensis* sp. nov. [sic]; Xiong, 543, pl. 2, figs 11–16 [reillustration of the two specimens in Xiong in Xian et al., 1980].

1982. *Polygnathus linguiformis bultyncki* Weddige; Weddige, 34, pl. 1, fig. 13.

1982. *Polygnathus linguiformis bultyncki* Weddige; Brown, 43, pl. 4, figs 6, 7, 9 [not fig. 8 = *P. linguiformis linguiformis* Hinde theta morphotype of Klapper in Johnson, Klapper, and Trojan, 1980].

[not] 1983. *Polygnathus linguiformis bultyncki* Weddige beta and alpha morphotypes of Wang and Ziegler, 89, 100, pl. 5, figs 18, 19 [fig. 18 = *P. inversus* transitional with *P. serotinus*, fig. 19 = ?].

1984. *Polygnathus linguiformis bultyncki* Weddige; Apekina, 83–84, pl. 23, fig. 2.

1984. *Polygnathus kimi* Mashkova and Apekina; Apekina, 83, pl. 22, figs 1, 2.

1985. *Polygnathus linguiformis bultyncki* Weddige; Austin et al., 138, pl. 4.2, figs 8, 9.

1985. *Polygnathus linguiformis bultyncki* Weddige; Schönlaub In: Feist, Schönlaub, and Bultynck, 282, pl. 7, figs 11–16.

[not] 1986. *Polygnathus linguiformis bultyncki* Weddige beta morphotype of Wang and Ziegler; Ziegler and Wang, 30, pl. 1, fig. 15 [reillustration of pl. 5, fig. 18 of Wang and Ziegler, 1983].

1986. *Polygnathus linguiformis bultyncki* Weddige; Schönlaub, 368, pl. 4, fig. 26.
1987b. *Polygnathus linguiformis bultyncki* Weddige; Mawson, 259, pl. 1, fig. 10.
1990. *Polygnathus linguiformis bultyncki* Weddige; Uyeno, 84–85, pl. 18, figs 1, 2, 8.
1994. *Polygnathus linguiformis bultyncki* Weddige; Bai, 179, pl. 18, figs 1, 2.
1995. *Polygnathus linguiformis bultyncki* Weddige; Sloan et al., 60, pl. 7, figs 5, 6.
1999. *Polygnathus bultyncki* Weddige; Belka et al., pl. 2, fig. 6.
2002. *Ctenopolygnathus najiaoensis* (Xiong); Bardashev, Weddige, and Ziegler, 413, text-fig. 13, no. 20.
2002. *Ctenopolygnathus kimi* (Mashkova and Apekina); Bardashev, Weddige, and Ziegler, 413, text-fig. 13, no. 21.
2002. *Linguipolygnathus anastasiae* sp. nov. alpha morphotype Bardashev, Weddige, and Ziegler, 419, text-fig. 15, no. 30 [= reillustration of Apekina and Mashkova, 1978, pl. 77, fig. 10].
2002. *Linguipolygnathus bultyncki* (Weddige); Bardashev, Weddige, and Ziegler, 420, text-fig. 15, no. 34 [= reillustration of holotype].
2003. *Polygnathus linguiformis linguiformis* Hinde; Pyle, Orchard, Barnes, and Landry, 111, pl. 2, fig. 11.
2010. *Polygnathus serotinus* Telford; Meço, 180, pl. 3, fig. 7 [only].
2011. *Polygnathus bultyncki* Weddige; Vodrážková, Klapper, and Murphy, 760, figs 13H, I.

MATERIAL: 127 specimens from the Prague Basin (for distribution, see Berkyova 2009, figs 2–4. 1365 specimens were counted from 163 faunal slides (32 samples) from the northern Antelope Range, central Nevada (samples are listed in Johnson et al. 1996, section V, table 2). The same protocol used with *Polygnathus serotinus* applies to *P. bultyncki* in terms of the number of uncounted slides and lack of counts for the northern Hot Creek Range samples.

DIAGNOSIS: Representative Pa elements have a moderately large pit located just anterior of the inward deflection of the keel. Well developed tongue covered by strong transverse ridges. Outer posterior margin just anterior of tongue about at same height as carina and inner margin. Outer margin flange not developed.

REMARKS: *Polygnathus bultyncki* is distinguished from Pa elements of *P. serotinus* by commonly lacking a protuberance on the outer side of the pit and the lack of a high, flange-like outer margin anterior of the tongue. Furthermore, the tongue is generally set with stronger, more numerous transverse ridges than in *P. serotinus*. The two species are clearly distinguishable on the basis of the upper surface characteristics just mentioned. However, as noted in the original diagnosis and relationships of *P. bultyncki* by Weddige (1977, p. 314, 416, pl. 4, fig. 92) a protuberance may be developed in some specimens, but that of his illustrated figure is different in shape from the protuberance of *P. serotinus*. A protuberance is not present in our Nevada specimens but it has been observed in some of the Czech material (e.g., Text-fig. 6B1). The two mature specimens of *P. bultyncki* illustrated by Apekina and Mashkova (1978, pl. 78, figs. 5, 6) are also unusual in having a shelf-like protuberance but again it is of different shape from that of *P. serotinus*. The protuberance in these specimens is directed slightly to the posterior whereas it is directed straight laterally or slightly to the anterior in mature Pa elements of *P. serotinus*. The specimens of Bai (1994, p. 180, pl. 18, figs 7–9) that formed the basis of his species, *P. neoserotinus*, have an identical protuberance to the specimen of Apekina and Mashkova (1978, pl. 78, fig. 6). We regard the exceptional occurrence of this protuberance in *P. bultyncki* as an intraspecific development. The specimen illustrated by Apekina and Mashkova (1978, pl. 78, fig. 6) was reillustrated by Bardashev et al. (2002, text-fig. 15, no. 31) as representative of their beta morphotype of *Linguipolygnathus anastasiae*, but the
holotype of that species (Apekina and Mashkova 1978, pl. 77, fig. 10) is a typical Pa element of P. bultyncki.

Polygnathus bultyncki differs from *P. linguiformis* s.s. (that is, *P. linguiformis linguiformis* gamma morphotype of authors) by lacking the high, flange-like outer margin immediately anterior of the tongue (Klapper 1971, p. 64). As the specimen illustrated by Pyle *et al.* (2003, pl. 2, fig. 11) lacks that morphologic feature, it is better identified as *P. bultyncki*. We do not treat *P. bultyncki* as a subspecies of *P. linguiformis*, following the usage of Belka *et al.* 1999 and Vodrážková *et al.* 2011.

The smallest immature specimens of *Polygnathus bultyncki* have not yet developed the tongue and accompanying transverse ridges. That appears to be why a number of names, *P. kimi*, *P. hanshanensis*, *P. hanshanensis obovatus*, and *P. najiaoensis*, have been proposed as separate species based on very small specimens. Our material from the Prague Basin and central Nevada indicates that there is a complete ontogenetic continuum.
from small specimens without a tongue and transverse ridges, to slightly larger specimens that have the beginnings of a tongue and a few transverse ridges, to the large specimens with a well developed tongue and numerous, strong transverse ridges (Text-fig. 1). These later ontogenetic stages of the Pa element have consistently been identified as P. bultyncki in the relevant literature.

Polygnathus labiosus mawsonae proposed by Long and Burrett (1989) is not closely related to P. labiosus Mawson (1987a, p. 274, pl. 35, figs 1–9; pl. 36, figs 3, 4), the platform element of which has a relatively large basal cavity. Their proposed subspecies is synonymous with “basal cavity.” Their proposed subspecies is synonymous with P. bulbuncyki. This is evident, for example, in Long and Burrett’s specimen (1989, fig. 5.8) where part of the basal plate material has been broken away revealing the pit. Other of their specimens, where the basal plate is not preserved (figs 5.9, 7.6, 7.7, 7.10), show a pit instead of a basal cavity. [For the standard terminology used here, see Clark and Müller (1968) and Sweet (1981, 1988)

The standard terminology used here, see Clark and Müller (1968) and Sweet (1981, 1988].

RANGE: serotinus Zone to costatus Zone.

Polygnathus praetrigonicus Bardashev, 1992
(Text-fig. 7A–F)

1974. Polygnathus aff. trigonicus Bischoff and Ziegler; Perry, Klappler, and Lenz, 1091, pl. 8, fig. 14.
1980. Polygnathus aff. P. trigonicus Bischoff and Ziegler; Bultynck and Holland, 46, pl. 3, figs 11, 12.
1980. Polygnathus aff. trigonicus Bischoff and Ziegler; Xiong, 98, pl. 26, figs 17, 18, pl. 27, figs 4, 5.
1981. Polygnathus aff. trigonicus Bischoff and Ziegler; Xiong, 542, pl. 2, figs 27–29 [reillustration of specimen in preceding paper, pl. 26, figs 17, 18].

1986. Polygnathus sp. aff. P. trigonicus Bischoff and Ziegler; Schönlaub, 368, pl. 4, figs 27, 28.

2005. Polygnathus sp. aff. P. trigonicus (Bischoff and Ziegler) [sic]: Mawson and Talent, 380, figs 4 N, O [not figs 4 C, D].
2009. Polygnathus sp. aff. P. trigonicus Bischoff and Ziegler; Berkyová, 679, 681, fig. 6 L.
2010. Polygnathus aff. P. trigonicus Bischoff and Ziegler; Machado et al., 445, pl. 2, fig. J.

MATERIAL: Five specimens from the Prague Basin: 40 cm above the base of the Choteč Limestone, Na Škrábku quarry at Choteč (two specimens, 20 cm above the base of Nowakia (Dmitriella) sulcata sulcata Zone); 400 cm above the base of the Choteč Limestone, Na Škrábku quarry at Choteč (one specimen); 500 cm above the base of the Choteč Limestone, Na Škrábku quarry at Choteč (one specimen, sample with the first occurrence of Polygnathus costatus); 30 cm above the base of the Choteč Limestone, Barrandov road-cut (one specimen, 150 cm above the base of the costatus Zone). Eleven specimens from the northern Antelope Range section V; VH-16 (3 specimens), VH-17 (4 specimens), uppermost partitus Zone; VH-18 (one specimen), VG-22 (one specimen), VG-25 (2 specimens), all from the lower costatus Zone (Johnson et al. 1996, table 2). An additional eight specimens are from the Prague Basin from the Acanthopyge Limestone at the Red Quarry near Suchomasty, four at 0.10 m above the base and four at 1.12–1.37 m above the base of that formation, basal costatus Zone.

DIAGNOSIS: Representative Pa elements have a moderately large pit located somewhat anterior of midlength. Platform more or less triangular in outline set with strong transverse ridges, which are commonly separated from the carina by adcarinal troughs anteriorly narrowing to adcarinal grooves posteriorly. Anterior margins meet short free blade at almost right angles.

REMARKS: The carina commonly reaches the posterior tip, but there are exceptions in which a few transverse ridges are developed near the posterior end. Diagonal ridges are developed anteriorly in just a few specimens of this variable species (e.g., Bultynck and Holland 1980, pl. 3, fig. 11, these ridges converge posteriorly).
This species has been carried in open nomenclature for a long time, with many consistently identified specimens (see synonymy); it was formally named by Bardashev (1992). The principal distinction between *Polygnathus praetrigonicus* and *P. trigonicus* Bischoff and Ziegler (1957, p. 97–98, pl. 5, figs 1–6; Klapper 1973, p. 387–388) is that the pit is at or extremely close to the anterior end of the platform in the latter species. The platform outlines of the two are similar, but in *P. praetrigonicus* the strong transverse ridges are commonly shorter and separated from the carina by wider adcarinal troughs anteriorly. There are exceptions to this distinction, however, in which relatively narrow anterior grooves instead of troughs are present in rare specimens of *P. praetrigonicus* (e.g., Text-fig. 7D). Diagonal rows of nodes are commonly developed anteriorly in *P. trigonicus* (e.g., Wittekindt 1966, pl. 3, fig. 1), whereas diagonal ridges in the same position are only rarely developed in *P. praetrigonicus*, as noted above. The illustrated Pa element of Mawson and Talent (1994, pl. 2, fig. 16) has a much narrower platform than in the present species and that of Mawson and Talent (2005, figs 4 C, D) has a quite different platform outline.

Savage (1995, p. 550, figs. 8.8, 8.9) named a new species from the Wadleigh Limestone of Alaska as *Polygnathus praetrigonicus*, including earlier specimens that he had identified as *P. trigonicus* (Savage 1977, pl. 1, figs 1–12). As the name proposed by Bardashev (1992) has priority, Savage (2011) proposed *P. bagialensis* as the replacement name for the Wadleigh species. Wadleigh Pa elements differ from those of *P. trigonicus* in that the pit lies distinctly posterior of the anterior platform margin. They differ from those of *P. praetrigonicus* Bardashev in that the platform in mature Pa elements is relatively longer and narrower and there are a few randomly distributed but prominent nodes an-
teriorly. Furthermore, the Wadleigh species has narrow adcarinal grooves anteriorly rather than the commonly wide adcarinal troughs seen in Bardashev’s species.

RANGE: The lowest occurrences of *Polygnathus praetrigonicus* in the Prague Basin and in New York are in the basal *costatus* Zone. In the northern Antelope Range, central Nevada, the species ranges from the uppermost part of the *partitus* Zone to the basal *costatus* Zone. Elsewhere the species is in unconstrained parts of the *costatus* Zone (see discussion under Biostratigraphy).

Polygnathus pseudocostatus sp. nov.

Text-fig. 8A–G

HOLOTYPE: SUI 133911, illustrated on Text-fig. 8F, from the northern Antelope Range, central Nevada, section V, sample VH-7, *partitus* Zone.

MATERIAL: Thirty-three specimens from the northern Antelope Range, central Nevada: VH-6 (one specimen), VH-7 (eight specimens), VH-8 (14 specimens), VH-9 (8 specimens), all from the *partitus* Zone; VB-1 (one specimen), VG-25 (one specimen), lower *costatus* Zone (Johnson et al. 1996, table 2, see revision of zonal identifications in Vodrážková et al. 2011, p. 739). Three specimens from the northern Hot Creek Range, central Nevada, Summit 8782 section, 10A (two specimens, Johnson et al. 1986, table 8; Vodrážková et al. 2011, p. 741), probable *partitus* Zone, 8A (one specimen), *costatus* Zone.

DIAGNOSIS: Representative Pa elements have a relatively long and narrow platform set with strong transverse ridges separated from the carina by adcarinal grooves. Platform margins in posterior half commonly strongly corrugated with prominent furrows. Posterior carina commonly twisted or sig-
moidal. Moderately large pit lies somewhat anterior of platform midlength.

REMARKS: The extent of the carina varies from terminating coincident with the posterior margin of the platform to extending one denticle beyond. In an early ontogenetic specimen (Text-fig. 8A) it extends several denticles beyond the posterior margin of the platform. The exact termination of the carina is thus a highly variable intraspecific character.

Polygnathus pseudocostatus differs from *P. angusticostatus* Wittekindt (1966, p, 631, pl. 1, figs 15–18; Klapper 1971, pl. 3, figs 21–25; Weddige 1977, pl. 6, figs 102–104; Sparling 1981, p. 309, 311, pl. 1, figs 11, 13–18, 21–23), in which the platform margins in the posterior half are smooth and not set with corrugations. Furthermore, the carina is not twisted or sigmoidal as in some specimens of *P. pseudocostatus*. Whereas specimens of *P. angusticostatus* commonly have the carina extending several denticles beyond the posterior margin of the platform, there are some specimens in which the carina terminates at the posterior platform margin (e.g., Bultynck and Hollard 1980, pl. 3, fig. 17; Sparling 1981, pl. 1, figs 17, 22).

RANGE: *partitus* Zone to *costatus* Zone.

CONCLUSIONS

1. High abundances of *Polygnathus serotinus* and *P. bultyncki* in restricted stratigraphic intervals allow us to recognize significant intraspecific and ontogenetic variation within samples from populations of these two prominent Emsian-Eifelian conodont species. Nine different names have been applied to *P. serotinus* and six to *P. bultyncki* by previous authors. We synonymize all these names because they represent either early ontogenetic stages or intraspecific variants of mature stages of the two species.

2. We recognize three different types of the diagnostic shelf-like protuberance on the outer side of the pit in the Pa element of *Polygnathus serotinus*. These three types are ontogenetically stable and occur consistently both in terms of geography and stratigraphy within the Prague Basin. Since they have no demonstrated biostratigraphic utility, and from a taxonomic viewpoint are most reasonably regarded as intraspecific variants, they are treated herein as informal morphotypes of *P. serotinus*.

3. An enlargement of the pit in early growth stages of *P. bultyncki* and a subsequent size decrease in later stages has been observed in 23 measured specimens. However, we consider that this number of specimens is not large enough to rule out intraspecific variation as the cause of our observations. Thus, our study does not resolve this question.

4. The conodont zonation across the Emsian-Eifelian (Lower-Middle Devonian) boundary from the *serotinus* and *patulus* zones through the *partitus* Zone (basal Eifelian) into the *costatus* Zone is well developed in the Prague Basin. The Czech succession is comparable to that in central Nevada, with the exception that the *patulus* Zone is missing there due to a regional unconformity (Vodrážková et al. 2011, p. 739-741). The nominal species that define the lower boundaries of the first three zones all range into the *costatus* Zone, requiring a detailed sequence of closely spaced samples through several zones for confident zonal identification. The lowest occurrence of *Polygnathus praetrigonicus* may be taken as a working hypothesis to represent the basal *costatus* Zone in the Prague Basin as it does in the revised New York succession.

Acknowledgements

The order of authorship is alphabetical as we contributed equally to the paper. The study was begun in 2008 at the University of Iowa on S.V.’s meeting with G.K. and her study of the collections there. S.V.’s research was supported by the Czech Science Foundation (P210/12/2018), Alexander von Humboldt Foundation and the Czech-American Cooperation Program (Kontakt ME08011). S.V. also received support from the SYNTHESYS Project http://www.synthesys.info/ which is financed by the European Community Research Infrastructure Action under the FP7 „Capacities” Program. “Z. Belka (Adam Mickiewicz University, Poznań), P. Bultynck (Royal Belgian Institute of Natural Sciences, Brussels) and C. Spalletta (University of Bologna) are to be thanked for their thorough reviews. J. Dzik (Institute of Paleobiology, Polish Academy of Sciences, Warsaw) is gratefully acknowledged for discussion of the mode of growth of conodonts. S.V. thanks P. Bultynck and K. Weddige (Senckenberg Research Institute, Frankfurt am Main) for discussions on taxonomy of Lower and Middle Devonian conodonts. G.K. thanks C.A. Sandberg (U. S. Geological Survey, Denver) for taxonomic discussions involving this paper. The interpretations expressed in this paper, however, are solely those of the authors. This is our contribution to IGCP 596.

REFERENCES

Bardashev, I.A. and Ziegler, W. 1986, Conodonts from a Middle Devonian section in Tadzhikistan (Kala-gagh Fm., Middle Asia, USSR). Courier Forschungsinstitut Senckenberg, 75, 65–77. [date of imprint, 1985]

Klapper, G. 1971. Sequence within the conodont genus Polyg-

DEVONIAN CONODONTS FROM THE PRAGUE BASIN AND NEVADA

Mirăuţă, E. 1971. Étude des Conodontes dévoniens de la Dobrogea septentrionale (Zone de Tulcea). <i>Mémoires Institut de Geologie et Geologica</i>, 14, 7–34.

Talent, J.A. and Mawson, R. 1994. Conodonts in relation to age and environmental framework of the Burdekin Basin (Mid-

Manuscript submitted: 31* January 2013

Revised version accepted: 25* April 2013