Stability relationships of REE-bearing phosphates in an alkali-rich system (nepheline syenite from the Mariupol Massif, SE Ukraine)

MAGDALENA DUMAŃSKA-SŁOWIK¹, BARTOSZ BUDZYŃ², WIESŁAW HEFLIK¹ AND MAGDALENA SIKORSKA³

¹AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection Department of Mineralogy, Petrography and Geochemistry, al. A. Mickiewicza 30, PL-30-059 Kraków, Poland.
E-mail: dumanska@uci.agh.edu.pl

²Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, Senacka St. 1, PL-31002 Kraków, Poland.

³Polish Geological Institute-National Research Institute, 4 Rakowiecka St., PL-00-975 Warsaw, Poland.

ABSTRACT:

Primary REE-enriched fluorapatite and fluorbritholite-(Ce) in nepheline syenite from the Mariupol Massif (SE Ukraine), contain textural and chemical evidence of late- to post-magmatic metasomatic alteration. REE mobilization and replacement of the primary phases by fluid-mediated coupled dissolution-reprecipitation strongly depended on the distance between the altered minerals in the host rock. Fluorapatite and fluorbritholite-(Ce) forming individual pristine grains were partially replaced by the same phase with a new composition, resulting in the presence of patchy zoning in altered grains. The increased REE contents in altered fluorapatite rim domains are related to REE mobilization from the altered REE-depleted rim domains of the fluorbritholite-(Ce). The REEs were transported by a fluid with high F activity. The alteration of fluorapatite and fluorbritholite-(Ce) grains in contact resulted in the partial replacement of the primary phases by the same phase with a new composition, but also in the partial replacement of the fluorapatite by secondary monazite and fluorite. The REE mobilized from the fluorbritholite-(Ce) in the presence of a F-rich fluid in an alkali-rich system promoted formation of monazite as the new phosphate REE-host. The presence of secondary parisite in the altered domains of the fluorapatite and fluorbritholite-(Ce) indicates a CO₂ component in the fluid during metasomatic alteration.

Key words: Fluorapatite; Fluorbritholite; Monazite; Rare earth elements; Dissolution-reprecipitation; Mariupolite; Ukraine.

INTRODUCTION

The geochemical behaviour and stability relationships of rare earth elements (REE) -bearing phosphates have been a topic of broad interest for several decades. Apatite [Ca₃(PO₄)₂(F,Cl,OH)] and monazite [(REE,Th,U)PO₄] are two of the most common phosphate minerals, occurring in almost all varieties of igneous, metamorphic and sedimentary rocks, and two of the main hosts of REEs in the Earth’s crust. The sig-
significant tolerance to structural distortion and chemical composition ofapatite-group minerals contribute to the numerous geological, environmental/palaeoenvironmental and technological applications that require an understanding of the substitution mechanisms and other factors controlling the composition of apatites (cf. Pan and Fleet 2002). In general, the REE contents inapatite are low; however, extremely high concentrations of REEO_3 (up to ca. 18 wt.%) inapatite were documented in nepheline syenite from the Illmaussaq alkaline complex, South Greenland (Rønsbo 1989, 2008). Hence, REEs in alkaline rocks do not necessarily concentrate only in monazite as the major phosphate REE-host, giving us the potential to study REE partitioning.

Previous work on the stability relationships of apatite and monazite focused mainly on processes in silica-saturated crystalline rocks (e.g. Bingen et al. 1996; Broska and Siman 1998; Finger et al. 1998; Wing et al. 2003; Broska et al. 2005; Janots et al. 2006, 2008, 2011; Finger and Krenn 2007; Krenn and Finger 2007; Tomkins and Pattison 2007; Berger et al. 2008; Budzyn et al. 2010; Ondrejka et al. 2012). The textures most typically preserving the constituents of the reaction between REE phosphates and silicates are related to monazite breakdown and the subsequent formation of secondary fluorapatite–allanite–epidote coronas (e.g. Broska and Siman 1998; Finger et al. 1998). Since monazite and allanite stability relationships are strictly dependent on fluid and bulk rock compositions (e.g. Lee and Dodge 1964; Lee and Bastron 1967; Spear 2010; Budzyn et al. 2011), the occurrence of allanite is unexpected in low-Ca and high-Na rocks such as syenites. Rather, fluorapatite, britholite and, potentially, monazite may be formed as the main hosts of REEs (cf. Rønsbo 1989, 2008; Budzyn et al. 2011). REE mobilization between these phases can be related to primary crystallization from the protolith or to late- to post-magmatic processes. The last two decades have brought significant interest in the metasomatic alteration of the REE-bearing phosphates, particularly in pseudomorphic partial replacements driven by fluid-mediated coupled dissolution-reprecipitation, documented in nature (e.g. Harlov et al. 2003, 2007; Hetherington and Harlov 2008; Williams et al. 2011; Upadhyay and Pruseth 2012) and reproduced experimentally (e.g. Teufel and Heinrich 1997; Seydoux-Guillaume et al. 2002; Harlov and Förster 2003; Harlov et al. 2005, 2011; Hetherington et al. 2010; Budzyn et al. 2011; Williams et al. 2011; Harlov and Wirth 2012).

This study documents the stability relationships of REE-enriched fluorapatite, fluorbritholite-(Ce) and monazite in mariupolite, a leucocratic variety of nepheline syenite from the Mariupol alkaline massif (NW part of the eastern Priazovian region, Ukraine). The primary magmatic accessory phases, i.e. fluorapatite and fluorbritholite-(Ce), show evidence of low temperature alteration resulting from fluid-aided coupled dissolution-reprecipitation. Recognition of these processes is crucial in understanding mineral-fluid interactions, stability relationships and REE-partitioning between phosphates.

GEOLOGICAL BACKGROUND AND SAMPLE DESCRIPTION

The Mariupol (Oktyabrski) alkaline massif (Ukrainian Shield, south-eastern Ukraine), which covers an area of ca. 34 km2 (e.g. Krivdik et al. 2007), is a unique province of Proterozoic alkaline magmatism, with an age constrained to ca. 1.8 Ga (Volkova 2000, 2001). The massif is formed mostly of alkaline syenites and foyaites, with minor amounts of aegirine–albite nepheline syenites (the so-called mariupolite; Morozewicz 1902, 1929), subalkaline gabbros, and their derivatives (peridotites, pyroxenites). Aegirine foyaites and agpaitic phonolites occur mainly among host granitoids in the outer parts of the massif (Text-fig. 1). The vast majority of rocks belong to an agpaitic suite (i.e. containing complex silicates enriched in zirconium, titanium, the rare earth elements, and fluorine) whilst mariupolite is an intermediate variety between miaskitic and agpaitic types (Sharigin et al. 2009). Mariupolite covers only a small area (ca. 5-10%) of the whole massif. Further details on the massif can be found in Tichonienkova et al. (1967), Donskoy (1982), Solodov (1985), Volkova (2000; 2001) and Krivdik et al. (2007).

The leucocratic, fine- to medium-grained variety of nepheline syenite (mariupolite) shows porphyritic and chaotic or, locally, fluidal textures. The main mineral assemblage includes albite (Ab$_{94.92}$An$_{6.8}$), nepheline and aegirine with subordinate amounts of lepidomelane, K-feldspar, pyrochlore, sodalite, natrolite, zircon, fluorite, cancrinite, fluorapatite, fluorbritholite and monazite. The predominant mineral is albite, forming fine prismatic grains with rare twinning, or large grains of an older generation defining the porphyritic fabric of the rock. The nepheline forms large, dynamically deformed crystals with patchy extinction. The lepidomelane and cancrinite grains concentrate mainly close to the sodalite and natrolite aggregates. The K-feldspar forms large tabular grains, which occasionally reveal a crosshatched microcline pattern. Zircon crys-
tallizes as euhedral grains with oscillatory zoning along the rims and irregular patchy zoning in the cores (Dumańska-Słowik et al. 2011a). Euhedral to subhedral grains of pyrochlore are present in the interstices between the albite grains. The pyrochlore is surrounded by coronas of acicular Fe-chlorite. A more detailed mineralogical description of the mariupolite is presented by Dumańska-Słowik et al. (2011b).

ANALYTICAL PROCEDURES

Preliminary observations were performed on polished thin sections using a FEI Quanta 200 field emission gun scanning electron microscope (SEM) equipped with an EDAX energy dispersive spectrometer (EDS) at the Department of Mineralogy, Petrography and Geochemistry, the AGH University of Sci-
ence and Technology, Krakow; and a LEO 1430 SEM equipped with an Oxford ISIS 300 system at the Polish Geological National Research Institute in Warsaw. Chemical analyses were conducted using a Cameca SX-100 electron microprobe at the Inter-Institute Analytical Complex for Minerals and Synthetic Substances at Warsaw University. Electron microprobe operating conditions, standards and detection limits are presented in Table 1. The raw data were corrected using the PAP procedure (Pouchou and Pichoir 1985).

Table 1. Electron microprobe analyses conditions for REE minerals

<table>
<thead>
<tr>
<th>Analyte Symbol</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>TiO2</th>
<th>P2O5</th>
<th>As</th>
<th>Sc</th>
<th>Cr</th>
<th>LOI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Symbol</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>%</td>
</tr>
<tr>
<td>Detection Limit</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.001</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.001</td>
<td>0.01</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Mariupolite</td>
<td>60.16</td>
<td>20.61</td>
<td>3.55</td>
<td>0.06</td>
<td>0.06</td>
<td>0.37</td>
<td>12.11</td>
<td>1.63</td>
<td>0.05</td>
<td>0.01</td>
<td>2.50</td>
<td>2.60</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
</tbody>
</table>

Table 2. Bulk rock composition of the mariupolite

<table>
<thead>
<tr>
<th>Analyte Symbol</th>
<th>Th</th>
<th>U</th>
<th>Y</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Symbol</td>
<td>ppm</td>
</tr>
<tr>
<td>Detection Limit</td>
<td>0.1</td>
<td>0.1</td>
<td>2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Mariupolite</td>
<td>20.1</td>
<td>9.2</td>
<td>13</td>
<td>41.8</td>
<td>117</td>
<td>13.5</td>
<td>46.9</td>
<td>7.2</td>
<td>0.72</td>
<td>4</td>
<td>0.6</td>
<td>3.6</td>
<td>0.7</td>
<td>2.3</td>
<td>0.43</td>
<td>3.6</td>
<td>0.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte Symbol</th>
<th>Sc</th>
<th>Be</th>
<th>V</th>
<th>Cr</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>Ga</th>
<th>Ge</th>
<th>As</th>
<th>Rb</th>
<th>Sr</th>
<th>Zr</th>
<th>Nb</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Symbol</td>
<td>ppm</td>
</tr>
<tr>
<td>Detection Limit</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mariupolite</td>
<td>2</td>
<td>3</td>
<td>26</td>
<td>< 20</td>
<td>5</td>
<td>< 20</td>
<td>10</td>
<td>40</td>
<td>80</td>
<td>3</td>
<td>5</td>
<td>111</td>
<td>35</td>
<td>1812</td>
<td>620</td>
<td>< 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte Symbol</th>
<th>In</th>
<th>Sn</th>
<th>Sb</th>
<th>Cs</th>
<th>Ba</th>
<th>Hf</th>
<th>Ta</th>
<th>W</th>
<th>Ti</th>
<th>Pb</th>
<th>Bi</th>
<th>Cu</th>
<th>Ni</th>
<th>Zn</th>
<th>S</th>
<th>Ag</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Symbol</td>
<td>ppm</td>
</tr>
<tr>
<td>Detection Limit</td>
<td>0.2</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>3</td>
<td>0.2</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
<td>5</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>0.001</td>
<td>0.3</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Mariupolite</td>
<td>30</td>
<td>< 0.5</td>
<td>< 0.5</td>
<td>8</td>
<td>44.4</td>
<td>34.1</td>
<td>25</td>
<td>0.4</td>
<td>12</td>
<td>< 0.4</td>
<td>4</td>
<td>4</td>
<td>44</td>
<td>0.002</td>
<td>0.5</td>
<td>< 5</td>
<td></td>
</tr>
</tbody>
</table>
Bulk-rock analyses were performed in the Actlabs Activation Laboratories Ltd., Ancaster, Ontario, Canada. The abundances of major oxides and trace elements were determined using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), following lithium metaborate/tetraborate fusion and dilute nitric digestion. Major oxides and trace elements were analysed using Thermo Jarrell-Ash ENVIRO II ICP or a Spectro Cirros ICP and Perkin Elmer SCIEX ELAN 6000 ICP-MS, respectively. Calibration was performed using multiple USGS and CANMET certified reference materials. The results of the whole rock analysis are presented in Table 2.

RESULTS

The phosphate mineral assemblage in the maripolite comprises mainly fluorbritholite-(Ce) and fluorapatite, whilst monazite occurs in minor amounts. Both fluorbritholite-(Ce) and fluorapatite occur as individual matrix grains.

The fluorapatite forms anhedral, individual grains (up to 3 mm in size) dispersed in the maripolite matrix near lepidomelane, feldspar, zircon and nepheline. It shows patchy zoning (c. 2) with dark domains in high contrast BSE imaging, which dominate in the inner parts of grains, while the bright domains are present along rims, and penetrate the grain interiors leaving the dark domains that seem to look like subgrains (Text-fig. 2). The bright domains along the rims show sharp boundaries with the internal zones, and occasionally contain inclusions of parisite (Text-fig. 2c). The fluorapatite is significantly enriched in REEs, and reflects some compositional variation between the domains. The bright domains contain 13.6–16.6 wt.% REE₂O₃ versus 10.5–12.5 wt.% in dark domains (Table 3). The Na content is also elevated, and differs between the bright and dark domains, i.e. from 2.2–6 wt.% to 1.6–1.8 wt.% Na₂O, respectively (Table 3). The enrichment in Na and REEs is accompanied by a decrease in the Ca content (Text-fig. 3). The concentrations of Si, Sr and Mn are similar within the fluorapatite, and do not reflect variations between the internal domains.

The fluorbritholite-(Ce) usually occurs in association with albite, aegirine, zircon and pyrochlore. It forms individual anhedral matrix grains up to 700 μm that exhibit patchy zoning in high contrast BSE imaging (Text-fig. 4). The boundaries between the bright and dark domains display irregular shapes. In general, the bright domains are present in the inner parts, while the rims are dominated by the dark domains. The grain boundaries show irregular, lobate shapes suggesting that the grains are corroded. Single inclusions of fluorapatite and natrolite concentrating mainly near the rims of the grain are found rarely. The fluorbritholite shows some variation in composition between bright and dark domains. The bright domains are enriched in REE (56.3–60.1 wt.% REE₂O₃) compared to the dark domains (53.4–55.2 wt.% REE₂O₃; Table 4). Simi-
larly, the bright domains are distinctly depleted in Ca and Th (13.3–15.1 wt.% CaO; 0.4–0.6 wt.% ThO₂) in opposite to the dark patches domains (15.8–17.2 wt.% CaO; 0.7–1.5 wt.% ThO₂). Hence, the distinct enrichment in REEs is accompanied by significant decrease of Ca+Th content. Negative correlations of 2(REE) vs Ca+Th ($r = -0.979$) and Si+REE vs Ca+P ($r = -0.991$) are observed in fluorbritholite-(Ce).

Text-fig. 3. Plots of formula proportions 2Ca vs. (REE + Na) and (Ca + P) vs. (REE + Si) calculated on the basis of 13 O atoms for the fluorapatite in the maripolite. Ap-1 – the fluorapatite present as individual grains; Ap-2 – the fluorapatite in contact with the fluorbritholite.
Fluorbritholite-(Ce) grains occasionally are closely associated with fluorapatite in the matrix. The grain boundaries between fluorbritholite-(Ce) and fluorapatite are filled with a fine-grained symplectite of monazite and fluorite grains, which are also present as inclusions within the fluorapatite (Text-fig. 5). The symplectitic monazite forms anhedral grains up to ca. 100 µm in size. The monazite also forms elongated, up to ca. 200 µm, grains that partially surround the fluorapatite.

The fluorbritholite-(Ce) associated with fluorapatite shows patchy zoning in high contrast BSE imaging, with dark domains in the core and bright domains along the rims that occasionally contain small inclusions of arasite [Ca(Ce,La)₂(CO₃)₃F]. The bright and dark domains contain similar concentrations of REEs (58.3–60.2 wt.% vs. 58.6–58.9 wt.% REE₂O₃, respectively), Th (0.9–1.1 wt.% vs. 0.8–1.0 wt.% ThO₂, respectively) and P (2.2–3.4 wt.% vs. 1.8–2.7 wt.% P₂O₅, respectively). The differences are found...
in the concentrations of Ca and Si. Lower contents of 8.0–9.5 wt.% CaO and 18.0–18.5 SiO₂ are found in the bright domains, and higher content of 9.9–11.3 wt.% CaO and 18.6–19.7 wt.% SiO₂ in the dark domains.

The compositions of the dark and bright domains in the fluorapatite associated with fluorbritholite-(Ce) vary strongly. These variations include 2.2–2.5 wt.% SiO₂ in dark domains vs. 2.4–4.0 wt.% SiO₂ in bright domains, 34.5–35.8 wt.% P₂O₅ in dark domains vs. 31.2–33.0 wt.% P₂O₅ in bright domains, and 13.2–15.1 wt.% REE₂O₃ in dark domains vs. 17.1–19.1 wt.% REE₂O₃ in bright domains. Compared to individual grains of fluorapatite, the fluorapatite associated with fluorbritholite-(Ce) has higher contents of Si, Sr, Y and LREE, and lower contents of Ca, F and HREE (Text-fig. 6).

The monazite composition is typical of monazite-(Ce), although there are variable La and Nd contents (0.38 to 0.93 Nd/La; Table 5). The monazite

<table>
<thead>
<tr>
<th>Region of crystal</th>
<th>Individual, pristine grain of fluorapatite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>2</td>
</tr>
<tr>
<td>CaO</td>
<td>45.32</td>
</tr>
<tr>
<td>MnO</td>
<td>0.25</td>
</tr>
<tr>
<td>SrO</td>
<td>0.31</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.37</td>
</tr>
<tr>
<td>F</td>
<td>3.83</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>37.47</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.92</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td>0.23</td>
</tr>
<tr>
<td>La₂O₃</td>
<td>1.85</td>
</tr>
<tr>
<td>Ce₂O₃</td>
<td>5.02</td>
</tr>
<tr>
<td>PrO₂</td>
<td>0.68</td>
</tr>
<tr>
<td>Nd₂O₃</td>
<td>2.60</td>
</tr>
<tr>
<td>Sm₂O₃</td>
<td>0.49</td>
</tr>
<tr>
<td>Gd₂O₃</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Blank = below EMP detection limit. All analyses of As, Dy, Ho, Er, Yb, Th, U, S and Cl are below detection limit and therefore not included in the table.

Table 3B. Representative electron microprobe analyses of the fluorapatite
Stability relationships of REE-bearing phosphates in an alkali-rich system

has a low ThO₂ content, ranging from 0.5 to 1.6 wt.%. The concentrations of U and Pb are below the detection limit of the electron microprobe. It should be also noted that REEs from Eu to Lu, except three analytical spots with 0.7 –1.0 wt.% Gd₂O₃, are also below detection limits. Based on the plot of formula proportions (REE + P) vs. (Th + Si), substitution of the huttonitic component predominates over substitution of the cheralitic component in the monazite (Text-fig. 7).

Discussion

The individual matrix grains of fluorapatite in maripolite are interpreted as primary accessory phases crystallized during the early magmatic stage. The temperature of crystallization can be roughly constrained at ca. 600°C, with an interval of within 60-100°C based on the estimated apatite saturation temperature equation given in Piccoli and Candela (2002). Fluorapatite with extremely high REE₂O₃...
Text-fig. 4. The patchy zoned fluorbritholite-(Ce) (Brt) in high contrast BSE imaging. The internal textures of the grains resulted from the partial alteration of the primary phase via the fluid-aided coupled dissolution-reprecipitation process.

Text-fig. 5. The reaction texture related to the partial alteration of the primary fluorapatite and fluorbritholite-(Ce) via the fluid-aided coupled dissolution-reprecipitation process. Short distance between altered primary phases promoted partial replacement of the primary fluorapatite (Ap) by the secondary monazite (Mnz) and fluorite (Fl). The fluorbritholite-(Ce) is partially replaced by the secondary parisite (Prs). The BSE image; Ab – albite, Aeg – aegirine, Nph – nepheline.
Stability Relationships of REE-Bearing Phosphates in an Alkali-Rich System

The patchy zoning in both the fluorapatite and fluorbritholite are typical results of metasomatism. The contents (up to ca. 19 wt.%), is strictly related to the open apatite structure and its chemistry that provide the opportunity for various substitutions, resulting in possible incorporation of half the periodic chart in the atomic arrangement (Hughes and Rakovan 2002). The substitution of REEs for Ca in fluorapatite is charge-compensated by Na and Si via the coupled substitutions REE$^{3+} + \text{Si}^{4+} = \text{Ca}^{2+} + \text{P}^{5+}$ and Na$^+ + \text{REE}^{3+} = 2\text{Ca}^{2+}$ (cf. Fleet et al. 2000; Pan and Fleet 2002). The bulk rock composition (Table 2) indicates that the melt from which fluorapatite crystallized was a silica-undersaturated (60.2 wt.% SiO_2 with 19.5 wt.% of nepheline following CIPW norm) and significantly Na-enriched (12.11 wt.% Na_2O) comparing to the low Ca concentration (0.37 wt.% CaO). A recent experimental study documented monazite dissolution in the presence of a ($\text{Na}_2\text{Si}_2\text{O}_5 + \text{H}_2\text{O}$) fluid, and the formation of fluorapatite-britholite solid solution (Budzyń et al. 2011). Experimentally reproduced high Na activity conditions partially support the interpretation in this study that an alkali-rich system promotes incorporation of REEs into primary igneous fluorapatite and fluorbritholite rather than crystallization of monazite as a primary phosphate REE-host. The light REEs (lREEs) are preferentially substituted into the structure over heavy REEs (HREEs), which are below detection limits of the electron microprobe in both fluorapatite and fluorbritholite-(Ce) (Tables 3, 4). The high lREE/HREE ratio is strictly related to the bulk-rock composition, where lREEs significantly dominate over HREEs (Table 2).

Table 4A. Representative electron microprobe analyses of the fluorbritholite

<table>
<thead>
<tr>
<th>Individual, pristine grain of fluorbritholite</th>
<th>Bright domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>1</td>
</tr>
<tr>
<td>P_2O_5</td>
<td>2.25</td>
</tr>
<tr>
<td>ThO_2</td>
<td>0.45</td>
</tr>
<tr>
<td>Y_2O_3</td>
<td>1.17</td>
</tr>
<tr>
<td>La_2O_3</td>
<td>13.35</td>
</tr>
<tr>
<td>Ce_2O_3</td>
<td>29.15</td>
</tr>
<tr>
<td>Pr_2O_3</td>
<td>2.57</td>
</tr>
<tr>
<td>Nd_2O_3</td>
<td>11.16</td>
</tr>
<tr>
<td>Sm_2O_3</td>
<td>1.82</td>
</tr>
<tr>
<td>Gd_2O_3</td>
<td>0.73</td>
</tr>
<tr>
<td>CaO</td>
<td>13.30</td>
</tr>
<tr>
<td>MnO</td>
<td>0.36</td>
</tr>
<tr>
<td>SrO</td>
<td>0.06</td>
</tr>
<tr>
<td>Na_2O</td>
<td>1.51</td>
</tr>
<tr>
<td>F</td>
<td>0.43</td>
</tr>
<tr>
<td>Cl</td>
<td>0.00</td>
</tr>
<tr>
<td>H_2O</td>
<td>0.00</td>
</tr>
<tr>
<td>OH</td>
<td>0.00</td>
</tr>
<tr>
<td>Total cations</td>
<td>7.708</td>
</tr>
<tr>
<td>REE</td>
<td>2.895</td>
</tr>
</tbody>
</table>

Notes: Blank = below EMP detection limit. All analyses of Fe, Dy, Ho, Er, Yb, and U are below detection limit and therefore not included.
matic alteration leading to partial replacement via fluid-mediated coupled dissolution-reprecipitation (e.g., Putnis 2002, 2009). The reactive fluid generally operates as a catalyst, leading to the replacement of a mineral phase by a new composition of the same phase or by a completely new phase (Harlov et al. 2011). Chemical alteration via fluid-aided dissolution-reprecipitation may lead to the formation of various textures, including patchy zoning, but also concentric zoning that may be interpreted as a typical growth texture instead of a result of partial replacement (cf. Hetherington et al. 2010; Budzyń et al. 2011; Harlov et al. 2011; Williams et al. 2011). The process requires the same rates of dissolution of the primary phase and reprecipitation of the altered (or new) phase, which are in direct contact, separated only by a thin fluid film operating at a submicron scale to transport material across the reaction front (Harlov et al. 2011).

The fluorapatite showing patchy zoning and overgrowth-like rims that are bright in BSE images (Text-fig. 2c) is interpreted as a primary igneous phase metasomatically altered via fluid-aided dissolution-reprecipitation. There is no doubt that the patchy zoning is the result of such a process. Although bright rims potentially may be overgrowths, the partial penetration into the grain cores along the patchy borders and the presence of secondary parisite inclusions indicate that the rims were also formed by the chemical alteration of fluorapatite. The high-Na bulk composition promoted the REEs transported across fluid front penetrating fluorapatite to be incorporated into the structure via the substitution Na⁺ + REE³⁺ = 2Ca⁺. The Ca (and F) released from the altered fluorapatite formed parisite
inclusion, which points to the presence of a CO₂ component in the reactive fluid. The source of REEs was probably the fluorbritholite-(Ce) that also shows patchy zoning, although the brighter domains concentrate near the cores, whilst darker domains, interpreted as chemically altered, are present near the rims. The reactive fluid penetrating the primary igneous britholite-(Ce) released REEs that were mobilized and incorporated into the altered fluorapatite. REEs mobility was induced by a fluid with a high F activity (cf. Pan and Fleet 1996; Tropper and Manning 2007).

The progress of the alteration differed significantly, depending on the distance between the fluorapatite and fluorbritholite-(Ce) grains in the host mariupolite. The close proximity of fluorbritholite-(Ce) resulted in the fluid-aided dissolution-reprecipitation replacement of the altered fluorapatite by secondary monazite and fluorite that form symplectite-like grains surrounding, and present within, the fluorapatite. The altered fluorbritholite-(Ce) was a source of REEs that were mobilized and transported over a short distance to the altered fluorapatite to form monazite. Mobilization of PO₄³⁻ anions from the fluorapatite in the presence of F-rich fluid followed, with mobilization of Ca²⁺ to form fluorite. Additionally, the altered domains in fluorbritholite-(Ce) contain parsite inclusions, suggesting a CO₂ component in the reactive fluid that facilitated chemical alteration.

There is no direct evidence as to the precise conditions of fluorapatite and fluorbritholite-(Ce) alteration. The presence of secondary monazite with a low Th content may suggest low temperature conditions, according to the previous work that has documented very low Th contents in monazite formed during low-grade metamorphism (Rasmussen and Muhling 2009) or hydrothermal events (Kempe et al. 2008). However, the Th concentration in the monazite is also controlled by the Th budget in the bulk composition during monazite crystallization. Here, the ThO₂ content in monazite (0.5–1.2 wt.%) is similar to that in the fluorbritholite-(Ce) (0.5–1.5 wt.%), and there is no other potential source among the primary mineral phases.

A recent experimental study on the stability relationships between monazite, fluorapatite, allanite and REE-epidote (Budzyń et al. 2011), even though it concerned a silica-saturated system, may be a reference point in this discussion. The experimental results from runs with NaOH (alkaline) fluid showed that starting monazite is dissolved to form secondary monazite and fluorapatite-britholite at lower P-T conditions (450°C, 450 MPa), while increasing P or T promotes dissolution of monazite to form secondary fluorapatite (500°C, 450 MPa) or fluorapatite-britholite phase and allanite (450°C, 610-580 MPa) (Budżyń et al. 2011). Because the Ca activity plays a significant role in the stability relations of monazite, allanite and fluorapatite in granitic rocks (Lee and Dodge 1964; Lee and Bason 1967; Bea 1996; Broska et al. 2000; Claeson 2002), it is unexpected that allanite or REE-epidote would form in the mariupolite, which has a low Ca content. Rather, high temperature conditions promoted crystallization of primary REE-enriched fluorapatite.
and fluorbritholite from the parent magma, whilst late- to post-magmatic metasomatic alteration promoted formation of monazite stable under low-temperature conditions.

CONCLUSIONS

The mechanism of the fluid-mediated coupled dissolution-reprecipitation that promoted alteration of the primary igneous fluorapatite and fluorbritholite-(Ce) in the maripolite significantly depended on the distance between the phases in the host rock. The altered domains in the individual fluorapatite or fluorbritholite-(Ce) grains were replaced by the same phases with a new composition. The REEs were mobilized from the altered fluorbritholite-(Ce) and transported by a fluid with high F activity. The
Stability Relationships of REE-bearing Phosphates in an Alkali-Rich System

Text-fig. 6 B. Plots showing compositional variations between dark and bright domains in (Ap-1) the fluorapatite present as individual grains; and (Ap-2) the fluorapatite in contact with the fluorbritholite shown in Figure 5.

The cations are calculated on the basis of 13 O atoms.

Text-fig. 7. Plot of formula proportions (Y + REE + P) vs. (Th + Si) calculated on the basis of 4 O atoms for the monazite from the mariopolite. Dashed lines represent the huttonitic substitution (Th,U)SiREE_1P_−1 and cheralitic substitution Ca(Th,U)REE_2 (Förster 1998; Linthout 2007)
short distance of element transport between the contacting fluorapatite and fluorbritholite-(Ce) in contact has resulted in a partial replacement of the fluorapatite by secondary phosphate REE-host, monazite and also fluorite due to the release of Ca component from the altered primary phases. Additionally, the secondary parisite formed in the altered domains of the fluorapatite and fluorbritholite-(Ce) as a result of this alkali-bearing fluid induced process. The metasomatic alterations proceeded in the presence of the fluid with high F, Na and CO$_2$ activity during a late- to post-magmatic low-temperature hydrothermal event.

Acknowledgements

Leszek Giro and Adam Gawel are gratefully acknowledged for the assistance with the scanning electron microscope. Piotr Dzierżanowski is thanked for his assistance with the electron microprobe. The authors sincerely thank the reviewers, Ewa Słaby and Ray Macdonald for their helpful comments. The work was financially supported by the AGH - University of Science and Technology (Kraków, Poland), research project no 11.11.140.174.

REFERENCES

Broska, I., Williams, C.T., Janák, M. and Nagy, G. 2005. Alteration and breakdown of xenotime-(Y) and monazite-

Table 5. Representative electron microprobe analyses of the secondary monazite

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>28.90</td>
<td>28.93</td>
<td>28.70</td>
<td>29.06</td>
<td>29.06</td>
<td>28.67</td>
<td>28.78</td>
<td>28.92</td>
<td>28.79</td>
<td>29.11</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>0.43</td>
<td>0.58</td>
<td>0.49</td>
<td>0.49</td>
<td>0.37</td>
<td>0.38</td>
<td>0.58</td>
<td>0.67</td>
<td>0.65</td>
<td>0.41</td>
</tr>
<tr>
<td>ThO$_2$</td>
<td>0.45</td>
<td>0.78</td>
<td>0.58</td>
<td>0.63</td>
<td>0.49</td>
<td>0.72</td>
<td>1.17</td>
<td>1.64</td>
<td>1.44</td>
<td>0.62</td>
</tr>
<tr>
<td>Y$_2$O$_3$</td>
<td>0.11</td>
<td>0.08</td>
<td>0.13</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce$_2$O$_3$</td>
<td>34.08</td>
<td>34.08</td>
<td>33.93</td>
<td>33.87</td>
<td>35.23</td>
<td>35.03</td>
<td>34.67</td>
<td>34.99</td>
<td>34.87</td>
<td>35.18</td>
</tr>
<tr>
<td>Pr$_2$O$_3$</td>
<td>3.96</td>
<td>3.97</td>
<td>3.92</td>
<td>3.98</td>
<td>3.79</td>
<td>3.76</td>
<td>3.63</td>
<td>2.95</td>
<td>3.15</td>
<td>3.60</td>
</tr>
<tr>
<td>Nd$_2$O$_3$</td>
<td>14.11</td>
<td>13.70</td>
<td>13.89</td>
<td>13.85</td>
<td>12.88</td>
<td>12.15</td>
<td>12.27</td>
<td>8.36</td>
<td>8.52</td>
<td>12.52</td>
</tr>
<tr>
<td>Sm$_2$O$_3$</td>
<td>1.85</td>
<td>1.71</td>
<td>1.85</td>
<td>1.83</td>
<td>1.38</td>
<td>1.28</td>
<td>1.23</td>
<td></td>
<td></td>
<td>1.21</td>
</tr>
<tr>
<td>Gd$_2$O$_3$</td>
<td>0.88</td>
<td>0.73</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.09</td>
<td>0.23</td>
<td>0.25</td>
<td>0.10</td>
<td>0.06</td>
<td>0.21</td>
<td>0.13</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Cations per formula unit. on the basis of 4 oxygens

P	0.965	0.965	0.961	0.966	0.971	0.966	0.964	0.973	0.971	0.972
Si	0.017	0.023	0.020	0.019	0.014	0.015	0.023	0.027	0.026	0.016
Y	0.002	0.002	0.003	0.002	0.005	0.007	0.011	0.016	0.014	0.006
La	0.213	0.221	0.215	0.215	0.238	0.248	0.245	0.316	0.318	0.245
Ce	0.492	0.491	0.491	0.487	0.509	0.510	0.502	0.509	0.509	0.508
Pr	0.057	0.057	0.056	0.057	0.054	0.055	0.052	0.043	0.046	0.052
Nd	0.199	0.193	0.196	0.194	0.181	0.173	0.173	0.119	0.121	0.176
Sm	0.053	0.049	0.053	0.052	0.039	0.037	0.035			0.035
Gd	0.012	0.010	0.013							
Ca	0.004	0.010	0.011	0.004	0.003	0.009	0.005	0.001	0.001	0.001

| total | 2.017 | 2.017 | 2.021 | 2.015 | 2.014 | 2.019 | 2.014 | 2.004 | 2.006 | 2.012 |

Notes: Blank = below EMP detection limit.

Analyses of Tb, Dy, Ho, Er, Yb, U, Pb and S are below detection limit and therefore not included.

Anals of Th, Dy, Ho, Er, Y, U in granites and crustal protoliths; Implications for the chemistry of crustal melts. *Journal of Petrology*, 37 (3), 521–552.

(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos, 82, 71–83.

Donskoy, A.N. 1982. The nepheline complex of alkaline Oktyabr’skii massif, pp. 1–150. The Ukrainian Academy of Science, Kiev. [In Ukrainian]

from Crete, Greece: Microprobe data and geochronological implications. *Lithos*, **95**, 130–147

Tichonienkova, R.J, Osokin, J.d. and Gonzjejev, a.a. 1967. Rare-metals metasomatites of alkaline massives, pp. 1–196. Nauka. [In Ukrainian]

Wing, B., Ferry, J.M. and Harrison, T.M. 2003. Prograde de-
struction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology, 145, 228–250
Volkova, T.P. 2000. The genesis and ore mineralization of alkali rocks from the Oktyabr’skii Massif. Sbornik nauchnykh trudov, 4, 9–10. [In Ukrainian]
Volkova, T.P. 2001. The productivity criterion of REE and ore mineralization within rocks of the Oktyabr’skii Massif Naukovi praci DonDTU., 36, 63–69. [In Ukrainian]