Comparative geochemical assessment of jotunite rocks from the Suwałki Massif and the Sejny Intrusion (NE Poland)

ANNA GRABARCZYK1 and JANINA WISZNIEWSKA2

1 Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland. E-mail: anna.grabarczyk@student.uw.edu.pl
2 Polish Geological Institute – National Research Institute, Rakowiecka 4, PL-00-975 Warsaw, Poland. E-mail: jwis@pgi.gov.pl

ABSTRACT:

Jotunites (hypersthene monzodiorites/ferromonzodiorites) are rocks coeval with plutonic AMCG (anorthosite–mangerite–charnockite–rapakivi granite) suites, which are characteristic of the Proterozoic Eon. It has been experimentally shown that jotunite magma can be recognised as parental to anorthosites and related rocks: since then, research on these rocks has taken on a particular importance. Jotunites were recently described within the deeply buried c. 1.5 Ga Suwałki and Sejny anorthosite massifs in the crystalline basement of NE Poland. The major and trace element compositions of Polish jotunites show them to have a calc-alkalic to alkali-calcic and ferroan character, with a relatively wide range of SiO₂ content (40.56 wt. % up to 47.46 wt. %) and high concentrations of Fe (up to 22.63 wt. % Fe₂O₃), Ti (up to 4.34 wt. % TiO₂) and P (up to 1.46 wt. % P₂O₅). Slight differences in textural features, mineralogical compositions, and geochemistry of whole-rock jotunite samples from distinct massifs allow us to distinguish two kinds: a primitive one, present in the Sejny Intrusion, and a more evolved one, related to the Suwałki Massif.

Key words: Jotunites; Polish massif-type anorthosites; Parental magma; Primitive and evolved jotunites.

INTRODUCTION

Massif-type anorthosites and related rocks have been studied worldwide for over 100 years by numerous authors (see Ashwal 1993, 2010 for overview). Although many plausible origins have been postulated (Frost et al. 1989), none have given a convincing model of their formation. Several issues about the origin of these rocks have been debated, including: (1) What is the composition of the parental magma of anorthosites? (2) Where does the parental magma come from? (3) What is the mechanism that generated such huge volumes of feldspar cumulates? (4) What is the relationship between the felsic and basic members of the anorthosite–mangerite–charnockite–rapakivi granite (AMCG) suites? (5) Why are massif-type anorthosite intrusions restricted in age to the Proterozoic?

The AMCG magmatic association forms huge igneous complexes accompanied by minor amounts of intermediate rocks of hypersthene monzodioritic (jotunitic) composition. The discovery of jotunite rocks at the margin of andesine anorthosite bodies initiated a discussion about their meaning and possible models of their origin. It was argued that jotunites are: (1) transitional rocks in a comagmatic sequence from anorthosite to more felsic mangerite (Owens et al. 1993); (2) derived by the fractionation of mafic magmas unrelated to the anorthositic bodies (Emslie 1985); (3) derived from immiscible liquids conju-
gate to mangerites (Philpotts 1981); or (4) derived from residual liquids after anorthosite crystallization (Emslie 1978; Ashwal 1982; Emslie et al. 1994).

In the last case, a mantle-derived, Al-rich, basaltic parental liquid was postulated, which differentiates in a deep-seated magma chamber and crystallizes plagioclase (that accumulates at the roof of the intrusion) and mafic minerals (that sink down to the floor). The removal of mafic minerals leaves behind a residual melt of ferrodioritic composition. The plagioclases form a crystal mush that diapirically rises up to the level of final emplacement to build up anorthosite massifs. The ferrodioritic residual melt is entrained by the uprising plagioclase mush.

On the other hand, the lack of strong, visible, negative Eu anomalies in jotunites precludes a previous phase of plagioclase crystallization (Duchesne et al. 1974) and thus, a residual origin. Consequently, jotunites were also considered as (5) parental to andesine-type anorthosites (Duchesne and Demaiffe 1978). This conclusion was later confirmed experimentally (Vander Auwera and Longhi 1994; Longhi et al. 1999).

Anorthosites reveal evidence of polybaric emplacement, as indicated by the occurrence of high alumina orthopyroxene megacrysts (Emslie 1975; Fram and Longhi 1992), shown experimentally to have equilibrated at a lower crustal pressure of 11–13 kbar and then brought to their final level of crystallization, which took place at depths corresponding to 3–5 kbar pressure (Longhi et al. 1999). Diapiric emplacement is additionally confirmed by the appearance of kinked plagioclase crystals, caused by the ascent of the crystal mush into a shallower part of the crust (Wiszniewska et al. 2002). Moreover, it is now widely accepted that the occurrence of anorthosite massifs is connected with weak zones in the lithosphere (Duchesne et al. 1999), which were migration paths and led to the emplacement of the crystal mush into the upper part of the crust. This idea supported the model of underthrusting of a crustal tongue of dry, mafic rocks and their partial melting at 10–13 kbar to give jotunitic parent magmas (Duchesne et al. 1999).

When jotunites were found in the Suwałki and Sejny massifs in NE Poland (Wiszniewska et al. 2002), it became very tempting to consider jotunitic magma as parental for the Suwałki and Sejny anorthosites, as well.

GEOLOGICAL FRAMEWORK

The Suwałki Anorthosite Massif (SAM) and the Sejny gabbro–norite intrusion are located in NE Poland (Text-fig. 1) and belong to the south-western zone of the East European Craton (EEC; e.g., Bagiński et al. 2007). This area of the EEC is covered by non-metamorphosed Phanerozoic platform sediments of variable thickness, from 500 m in NE Poland up to 6–8 km along the Trans-European Suture Zone at the SW margin of the EEC (Ryka 1993). The recognition of deep basement structures is possible only through interpretation of geophysical data and from direct petrological and geochemical studies of drill cores (Bagiński et al. 2007) from about 250 deep boreholes, distributed unevenly throughout the area (Wiszniewska and Krzemieńska 2005).

Both the SAM and the Sejny Intrusion, together with the Kętrzyn Anorthosite Massif located to the west, are connected with different kinds of rapakivi-like granitoids of A-type affinity (Bagiński et al. 2001; Gawęda et al. 2009; Duchesne et al. 2010), and belong to the so-called Mazury Complex (Text-fig. 1). This structure forms a 200 km long belt associated with an E–W-trending older, later rejuvenated, deep crustal lineament (Kubicki and Ryka 1982; Bagiński et al. 2001; Cymerman 2014), active for approximately 15 million years (Morgan et al. 2000; Duchesne et al. 2010). The Mesoproterozoic, c. 1.5 Ga (Claesson et al. 2001) Mazury Complex intruded Palaeoproterozoic granulite-facies metamorphic complexes (Text-fig. 1) of the West Lithuanian Domain (Duchesne et al. 2010). The Kętrzyn Massif and the SAM show a diapirc character in cross-section (Juskowiak 1998). Later, post-magmatic deep erosion of the crystalline basement (Ryka 1998) exposed the concentric shape of the intrusions (Text-fig. 1), where an anorthositic centre, with some Fe-Ti deposits, is surrounded by norite, gabbro and diorite, the latter additionally crosscut by thin dyke-like jotunites. This petrology points to the presence of an AMCG suite characteristic of Proterozoic domains (Taylor et al. 1984; Ashwal 2010). Recent Re-Os isochron ages of 1559 ± 37 Ma have been obtained on oxide and sulphide minerals from the ore deposits in the SAM (Stein et al. 1998; Morgan et al. 2000; Wiszniewska et al. 2002) and extended onto the age of the anorthosites. All these features make the SAM and the Sejny Intrusion perfect objects for detailed studies on the origin and evolution of anorthosite massifs.

The samples used in this paper come from five boreholes located within the SAM and the Sejny Intrusion: Bilwinowo IG-1 (southern part of SAM; B1), Jeziorno Szlino-Kielskie IG-1 (eastern part of SAM; JS1) and Udryń 11 (centre of SAM; U11), and the Sejny IG-1 (SI) and Sejny IG-2 (S2) boreholes, respectively. Additionally, two major almost N–S-
trending discontinuities subdivide the SAM into three blocks (Ciesla et al. 1998), placing the Udryń 11 and Bilwinowo IG-1 boreholes in the western block and the Jezioro Szlinokiemskie IG-1 borehole in the eastern block (Text-fig. 1).

METHODS

Quantitative chemical data were acquired using a Cameca SXFive FE electron microprobe at the Inter-Institute Analytical Complex for Minerals and Synthetic Substances, University of Warsaw. The following standards, analytical lines, and crystals were used: albite – Na (Kα, LTAP), orthoclase – Al (Kα, TAP), albite – Si (Kα, TAP) for feldspars, diopside – Si (Kα, TAP) for pyroxene, orthoclase – K (Kα, LPET), Fe₂O₃ – Fe (Kα, LLIF), diopside – Mg (Kα, LTAP), rhodonite – Mn (Kα, LLIF), diopside – Ca (Kα, LPET), TiO₂ – Ti (Kα, LPET), Cr₂O₃ – Cr (Kα, LLIF), CoO – Co (Kα, LLIF), NiO – Ni (Kα, LLIF), crocoite – Pb (Mα, LPET), SrBaNb₂O₇ – Ba (La, LPET), SrBaNb₂O₇ – Sr (La, TAP) and Rb(Ge-Al-Ca) glass – Rb (La, LTAP). Analyses were conducted using an accelerating voltage of 15 kV and beam current of 10 nA (for feldspars) and 15 nA (for pyroxenes). ZAF corrections were applied. The standard deviation was set at 1%. Fe²⁺/Fe³⁺ ratio estimates were made on the basis of Droop’s (1987) method. The results are presented in Tables 1–3.

Whole-rock samples from the Bilwinowo IG-1, Udryń 11, Jezioro Szlinokiemskie IG-1, Sejny IG-1 and Sejny IG-2 boreholes were analysed for major and some trace elements in ACME Analytical Laboratories (now Bureau Veritas Minerals) and in the laboratory of the Polish Geological Institute – National Research Institute (PGI-NRI). Major elements were analysed using ICP-ES and trace elements were analysed using ICP-MS. The chemical compositions are presented in Tables 4–6.
<table>
<thead>
<tr>
<th>wt.%</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>56.78</td>
<td>58.41</td>
<td>58.27</td>
<td>57.25</td>
<td>57.08</td>
<td>57.80</td>
<td>50.98</td>
<td>57.58</td>
<td>57.11</td>
<td>58.06</td>
<td>58.34</td>
<td>58.27</td>
<td>57.99</td>
<td>58.15</td>
<td>58.08</td>
<td>57.77</td>
<td>57.97</td>
<td>56.93</td>
</tr>
<tr>
<td>FeO</td>
<td>0.15</td>
<td>0.14</td>
<td>0.11</td>
<td>0.13</td>
<td>0.15</td>
<td>0.14</td>
<td>0.19</td>
<td>0.12</td>
<td>0.20</td>
<td>0.14</td>
<td>0.14</td>
<td>0.11</td>
<td>0.13</td>
<td>0.16</td>
<td>0.13</td>
<td>0.19</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td>SrO</td>
<td>0.14</td>
<td>0.16</td>
<td>0.12</td>
<td>0.15</td>
<td>0.15</td>
<td>0.13</td>
<td>0.19</td>
<td>0.13</td>
<td>0.16</td>
<td>0.17</td>
<td>0.16</td>
<td>0.19</td>
<td>0.14</td>
<td>0.14</td>
<td>0.16</td>
<td>0.13</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.30</td>
<td>5.77</td>
<td>5.51</td>
<td>5.72</td>
<td>5.60</td>
<td>5.84</td>
<td>3.28</td>
<td>5.73</td>
<td>5.62</td>
<td>5.75</td>
<td>5.79</td>
<td>5.56</td>
<td>5.57</td>
<td>5.43</td>
<td>5.53</td>
<td>5.50</td>
<td>5.56</td>
<td>5.17</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.38</td>
<td>0.36</td>
<td>0.36</td>
<td>0.37</td>
<td>0.16</td>
<td>0.20</td>
<td>0.06</td>
<td>0.35</td>
<td>0.33</td>
<td>0.37</td>
<td>0.40</td>
<td>0.40</td>
<td>0.34</td>
<td>0.37</td>
<td>0.28</td>
<td>0.34</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Rb₂O</td>
<td>0.14</td>
<td>0.16</td>
<td>0.17</td>
<td>0.11</td>
<td>0.15</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.15</td>
<td>0.17</td>
<td>0.16</td>
<td>0.12</td>
<td>0.14</td>
<td>0.12</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 2. Representative electron microprobe analyses (EMPA) of plagioclase from the Bilwinowo IG-1 borehole (SAM); d.l. – below detection limit

<table>
<thead>
<tr>
<th>wt.%</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>65.52</td>
<td>65.39</td>
<td>66.36</td>
<td>66.07</td>
<td>66.09</td>
<td>65.49</td>
<td>66.46</td>
<td>66.14</td>
<td>66.63</td>
<td>66.91</td>
<td>66.07</td>
<td>65.98</td>
<td>65.87</td>
<td>64.49</td>
<td>64.58</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.05</td>
<td>18.09</td>
<td>18.11</td>
<td>17.99</td>
<td>18.08</td>
<td>17.93</td>
<td>18.24</td>
<td>18.09</td>
<td>18.31</td>
<td>18.44</td>
<td>18.24</td>
<td>18.21</td>
<td>18.19</td>
<td>18.33</td>
<td>18.28</td>
</tr>
<tr>
<td>SrO</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.25</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.28</td>
<td>0.24</td>
<td>0.27</td>
<td>0.26</td>
<td>0.30</td>
<td>0.25</td>
<td>0.28</td>
<td>0.27</td>
</tr>
<tr>
<td>BaO</td>
<td>0.94</td>
<td>0.88</td>
<td>0.84</td>
<td>0.85</td>
<td>0.92</td>
<td>0.93</td>
<td>0.96</td>
<td>0.90</td>
<td>1.14</td>
<td>1.12</td>
<td>1.04</td>
<td>0.95</td>
<td>1.05</td>
<td>2.19</td>
<td>2.04</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.29</td>
<td>0.25</td>
<td>0.29</td>
<td>0.29</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.29</td>
<td>0.22</td>
<td>0.58</td>
<td>0.51</td>
<td>0.47</td>
<td>0.40</td>
<td>0.42</td>
<td>0.89</td>
</tr>
<tr>
<td>Rb₂O</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.17</td>
<td>0.18</td>
<td>0.17</td>
<td>0.20</td>
<td>0.13</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.13</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>Total</td>
<td>100.72</td>
<td>100.35</td>
<td>100.04</td>
<td>100.19</td>
<td>100.19</td>
<td>100.37</td>
<td>100.85</td>
<td>100.28</td>
<td>101.11</td>
<td>101.31</td>
<td>100.36</td>
<td>100.13</td>
<td>100.05</td>
<td>100.34</td>
<td>100.42</td>
</tr>
</tbody>
</table>

Table 3. Representative electron microprobe analyses (EMPA) of potassium feldspar (microcline) from the Bilwinowo IG-1 borehole (SAM); d.l. – below detection limit
<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>Fe$_2$O$_3$</th>
<th>MnO</th>
<th>MgO</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
<th>P$_2$O$_5$</th>
<th>LOI</th>
<th>Total</th>
<th>Mg#</th>
<th>Fe#</th>
<th>A/CNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-1127.5</td>
<td>42.73</td>
<td>3.66</td>
<td>16.05</td>
<td>18.24</td>
<td>0.27</td>
<td>4.48</td>
<td>8.30</td>
<td>2.84</td>
<td>0.67</td>
<td>1.05</td>
<td>98.30</td>
<td>0.29</td>
<td>0.79</td>
<td>1.36</td>
</tr>
<tr>
<td>B1-1336</td>
<td>49.79</td>
<td>2.90</td>
<td>14.81</td>
<td>14.33</td>
<td>0.24</td>
<td>3.44</td>
<td>7.89</td>
<td>2.72</td>
<td>1.69</td>
<td>0.99</td>
<td>1.01</td>
<td>99.81</td>
<td>0.21</td>
<td>1.20</td>
</tr>
<tr>
<td>B1-1601.5</td>
<td>43.65</td>
<td>3.46</td>
<td>2.98</td>
<td>17.06</td>
<td>0.25</td>
<td>4.34</td>
<td>8.66</td>
<td>2.88</td>
<td>1.06</td>
<td>1.13</td>
<td>97.77</td>
<td>0.22</td>
<td>0.78</td>
<td>1.21</td>
</tr>
<tr>
<td>B1-1953</td>
<td>42.29</td>
<td>4.10</td>
<td>14.70</td>
<td>19.95</td>
<td>0.29</td>
<td>4.73</td>
<td>9.26</td>
<td>2.44</td>
<td>0.57</td>
<td>1.07</td>
<td>0.2</td>
<td>99.67</td>
<td>0.21</td>
<td>1.20</td>
</tr>
<tr>
<td>B1-1980</td>
<td>43.33</td>
<td>3.88</td>
<td>15.45</td>
<td>18.98</td>
<td>0.28</td>
<td>4.63</td>
<td>8.81</td>
<td>2.57</td>
<td>0.65</td>
<td>1.01</td>
<td>99.67</td>
<td>0.21</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>JS-1225</td>
<td>45.34</td>
<td>2.41</td>
<td>16.48</td>
<td>15.46</td>
<td>0.21</td>
<td>4.07</td>
<td>8.57</td>
<td>3.28</td>
<td>0.63</td>
<td>0.59</td>
<td>1.27</td>
<td>98.31</td>
<td>0.23</td>
<td>1.32</td>
</tr>
<tr>
<td>JS-1229</td>
<td>47.08</td>
<td>2.13</td>
<td>16.83</td>
<td>15.43</td>
<td>0.32</td>
<td>5.38</td>
<td>8.65</td>
<td>3.21</td>
<td>0.56</td>
<td>0.50</td>
<td>0.31</td>
<td>100.40</td>
<td>0.28</td>
<td>0.72</td>
</tr>
<tr>
<td>U11-1515</td>
<td>40.56</td>
<td>4.34</td>
<td>14.27</td>
<td>20.20</td>
<td>0.33</td>
<td>5.25</td>
<td>8.56</td>
<td>2.59</td>
<td>0.57</td>
<td>1.43</td>
<td>98.10</td>
<td>0.22</td>
<td>0.78</td>
<td>1.22</td>
</tr>
<tr>
<td>U11-1515.8</td>
<td>41.34</td>
<td>3.80</td>
<td>15.05</td>
<td>19.55</td>
<td>0.30</td>
<td>4.80</td>
<td>8.94</td>
<td>2.72</td>
<td>0.57</td>
<td>1.46</td>
<td>98.54</td>
<td>0.21</td>
<td>0.79</td>
<td>1.23</td>
</tr>
<tr>
<td>U11-1518</td>
<td>41.48</td>
<td>4.18</td>
<td>14.63</td>
<td>20.71</td>
<td>0.32</td>
<td>4.95</td>
<td>9.51</td>
<td>2.45</td>
<td>0.50</td>
<td>1.26</td>
<td>-0.4</td>
<td>99.66</td>
<td>0.21</td>
<td>0.79</td>
</tr>
<tr>
<td>S1-843</td>
<td>45.36</td>
<td>2.18</td>
<td>15.49</td>
<td>16.49</td>
<td>0.25</td>
<td>6.10</td>
<td>9.22</td>
<td>2.39</td>
<td>0.47</td>
<td>0.31</td>
<td>0.31</td>
<td>99.70</td>
<td>0.29</td>
<td>0.71</td>
</tr>
<tr>
<td>S2-877</td>
<td>47.46</td>
<td>1.58</td>
<td>18.28</td>
<td>13.68</td>
<td>0.24</td>
<td>5.25</td>
<td>9.40</td>
<td>1.63</td>
<td>0.65</td>
<td>0.26</td>
<td>1.3</td>
<td>99.75</td>
<td>0.30</td>
<td>0.70</td>
</tr>
<tr>
<td>S2-1296A</td>
<td>43.66</td>
<td>1.84</td>
<td>12.87</td>
<td>22.66</td>
<td>0.40</td>
<td>7.84</td>
<td>5.76</td>
<td>2.17</td>
<td>0.76</td>
<td>0.47</td>
<td>98.42</td>
<td>0.28</td>
<td>0.72</td>
<td>1.48</td>
</tr>
<tr>
<td>S2-1296B</td>
<td>43.62</td>
<td>2.41</td>
<td>15.07</td>
<td>19.23</td>
<td>0.29</td>
<td>5.09</td>
<td>8.22</td>
<td>2.70</td>
<td>0.55</td>
<td>0.78</td>
<td>97.95</td>
<td>0.23</td>
<td>0.77</td>
<td>1.31</td>
</tr>
<tr>
<td>S2-1619</td>
<td>46.60</td>
<td>2.10</td>
<td>15.68</td>
<td>15.78</td>
<td>0.26</td>
<td>4.78</td>
<td>8.33</td>
<td>2.81</td>
<td>0.77</td>
<td>0.60</td>
<td>97.72</td>
<td>0.25</td>
<td>0.75</td>
<td>1.32</td>
</tr>
<tr>
<td>S2-1623</td>
<td>45.00</td>
<td>2.37</td>
<td>15.63</td>
<td>17.42</td>
<td>0.24</td>
<td>4.29</td>
<td>8.37</td>
<td>2.65</td>
<td>0.71</td>
<td>0.94</td>
<td>97.61</td>
<td>0.21</td>
<td>0.79</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Table 5. Representative electron microprobe analyses (EMPA) of pyroxene from the Bilwinowo IG-1 borehole (SAM); d.l. – below detection limit.
According to Streckeisen (1974), jotunites are hypersthene monzodiorites or monzonorites. They are common components of the SAM and the Sejny Intrusion, appearing as chilled margins and dykes crosscutting anorthosites and surrounding zones of nорite or gabbro rocks. The original melt character of the jotunites is supported by their chilled microtextures. Jotunites show characteristic medium- to fine-grained textures (Text-fig. 2A, B) of chilled type melts, which suggests a later injection of hot jotunitic magma into mafic rocks. They appear as dykes that result in a directional texture, which is additionally underlined by porphyritic, very often kinked plagioclase crystals (Text-fig. 2C, D). However, jotunites from the Sejny Intrusion contain more porphyritic plagioclase than those from the Bilwinowo IG-1 borehole. The jotunite dykes are holocrystalline.

Petrographically, the jotunites are made up of andesine or labradorite (antiperthitic) plagioclase, Ca-rich pyroxene, Ca-poor pyroxene (Text-fig. 2C), Fe-Ti oxides (magnetite and ilmenite), prismatic, elongate apatite crystals (Text-fig. 2E) up to 0.25 mm long as irregular inclusions in groundmass plagioclase, and traces of brownish Ti-rich (up to 4.8 wt. %) biotite or amphibole. Zircon and baddeleyite are accessory minerals. In the most evolved type of jotunites, microperthitic K-feldspar coexists with plagioclase. Fe-Ti oxide minerals are commonly interstitial with amoeboidal shapes (Text-fig. 2B). In some chilled rocks, Fe-Ti oxides occur as small rounded grains associated with mafic minerals; pyroxene and biotite.
Tabular crystals of plagioclases, both in the groundmass and porphyritic ones, are the main rock-forming minerals. Some megacrysts, up to 5 mm long, show kinked twin planes, which were considered evidence for the diapiric emplacement of crystal mush (Wiszniewska et al. 2002; Wiszniewska and Petecki 2014; Text-fig. 2C). Megacrysts of plagioclase do not show zonation, but do show slight
differences in composition in each massif, with an average of An_{48(45-52)} in the Bilwinowo IG-1 borehole and An_{60(51-61)} in the Sejny Intrusion (Gawęda et al. 2009; Table 1; Text-fig. 3). Plagioclase, with a more anorthitic composition up to An_{74}, was also found in the rock groundmass. The plagioclase megacrystals are filled with needles of Fe-Ti oxides. Locally, they also contain an association of very small pyroxene and ore-oxide grains that possibly resulted from the crystallization of melt inclusions. These inclusions appear parallel to the crystals rims (Text-fig. 2F). Antiperthitic exsolutions of orthoclase composition
(Or$_{90}$Ab$_{10}$) are also very common (Table 2). At a pressure of 4–5 kbar (400–500 MPa) – corresponding to the depth of the anorthosite diapir final emplacement – calculated equilibrium temperatures for feldspars oscillate around 500ºC (Nekvasil and Burnham 1987). Stability fields of feldspars can be seen in Text-fig. 3.

Pinkish to pinkish green orthopyroxene and colourless to brownish clinopyroxene (Text-fig. 2C, E) form anhedral grains up to 0.5 mm, and sporadically up to 1 mm long. The content of Ca-rich (En$_{40}$Fs$_{16}$Wo$_{48}$; mg# = 71) and Ca-poor (En$_{58}$Fs$_{40}$Wo$_{2}$; mg# = 57) pyroxene (Table 3; Text-fig. 4) in jotunites from the Bilwinowo IG-1 borehole are almost equal, with a slight dominance of Ca-poor pyroxene. As in plagioclase, pyroxene shows differences in composition in the Bilwinowo IG-1 and Sejny IG-1 and IG-2 boreholes, with moderately low Ca content both in Ca-poor and Ca-rich pyroxene (mg# = 59 and 75, respectively) in jotunites from the Sejny IG-1 and IG-2 boreholes (Gawęda et al. 2009). Numerous Schiller lamellae of Ca-poor pyroxene are a characteristic feature of Ca-rich pyroxene crystals: this kind of exsolution does not occur in Ca-poor pyroxene (orthopyroxene). At the contact with younger, granitoid dykes, pyroxene is occasionally replaced to various degrees by green amphibole. Ilmenite and magnetite are the main opaque minerals, but sulphides such as pyrrhotite and pyrite after pyrrhotite are also present, although less abundant. K-feldspar is a rare mineral and occurs as interstitial grains of irregular shape, or more often as antiperthitic exsolutions in plagioclase.

GEOCHEMISTRY

Samples from the Hidra Massif (HM) and the Bjerkreim-Sokndal Layered Intrusion (BSLI) in the Rogaland Province (c. 930–920 Ma), SW Norway (Demaiffe and Hertogen 1981; Schärer et al. 1996; Vander Auwera et al. 1998) and the Korosten Complex (KC-J – jotunite; KC-QI – quartz jotunite), Ukraine (1.8 Ga; Duchesne et al. 2017; Shumlyansky et al. 2017) have been used for geochemical comparison with the Polish jotunites.
Major elements

The major element compositions of the samples are given in Table 4. Jotunites with an A/CNK index (Aluminous Saturation Index) from 1.17 to 1.48 are metaluminous. Based on the TAS (total alkalis-silica) discrimination diagram for plutonic rocks (Middlemost 1994; Text-fig. 5), jotunites are placed in the fields of gabbro, peridotite–gabbro and foid–gabbro. Most samples are calc-alkalic to alkali calcic, with minor alkalic, and ferroan components following Frost’s classification (Frost et al. 2001; Text-fig. 6). Samples from the SAM show less diversity on Frost’s diagram and are only alkali calcic. Samples from the Sejny Intrusion are generally slightly less ferroan. The same regularity can be seen in the Mg# and Fe# indexes (Table 4) and on Harker diagrams (Text-fig. 7C).

Variation diagrams, as a function of Mg# (Text-fig. 8D), show increased amounts of SiO₂ with an increase in Mg#, which is caused by a faster decrease of Fe₂O₃ than MgO with SiO₂ increase. Jotunites define trends of decreasing Fe₂O₃, TiO₂, P₂O₅ and MgO with increasing SiO₂ on Harker diagrams (Text-fig. 7C–F). In general, the Bilwinowo IG-1 and Udryn 11 jotunites follow less dispersed trends among all samples, whereas the Sejny IG-1 and IG-2 samples are rather scattered; the jotunites from Jezioro Szlinokienskie IG-1 have an intermediate pattern. Jotunites from anorthosite massifs within the Mazury Complex can be divided into two groups on the basis of chemical composition. It is clearly visible on both the Harker (Text-fig. 7C, E, F) and Mg# diagrams (Text-fig. 8C, E, F) that jotunites from the SAM have higher amounts of TiO₂ (up to 4.34 wt. %), Fe₂O₃ (up to 20.71 wt. %) and P₂O₅ (up to 1.46 wt. %) than those from the Sejny Intrusion (Table 4). TiO₂ and P₂O₅ peak at c. Mg# = 20, reflecting saturation in Ti-rich oxide minerals and apatite. Three samples (B1-1336, S2-1296A, S2-877) deviate from the trends. Sample B1-1336 has higher SiO₂ and K₂O contents and lower TiO₂ and Fe₂O₃ contents, and is located close to the sample from the Bjerkreim-Sokndal Intrusion (referred to as a primitive jotunite). Sample S2-1296A is rich in Fe₂O₃ and MgO but depleted in CaO and SiO₂ suggesting enrichment in orthopyroxene with minor clinopyroxene. Sample S2-877 has a high Al₂O₃ content, which may reflect the abundance of plagioclase; however, it has a very low content of Na and additionally an elevated content of Ca and SiO₂, which may indicate the presence of clinopyroxene.

Samples from the Hidra Massif and the Bjerkreim-Sokndal Intrusion (interpreted as primitive jotunite) are quite similar to the Sejny Intrusion jotunites in terms of Fe₂O₃ and P₂O₅ content, and to the SAM jotunites based on TiO₂ values. However, jotunites from Rogaland are visibly enriched in SiO₂ and alcalis. Jotunites from the Korosten Massif have also higher levels of Na and K (Text-fig. 8G, H).

Trace elements

In general, REE contents are inversely correlated with SiO₂ and with Mg# (Text-fig. 9), reaching a maximum at c. Mg# = 20. Jotunites from the Sejny Intrusion with higher SiO₂ have lower REE contents, with ΣREE up to 298 ppm, in contrast to 680 ppm in the Bilwinowo IG-1 samples. Jotunites can be sub-divided into two groups based on Eu/ Eu* values (Text-fig. 10), where Eu anomalies are either slightly negative, positive or even absent (e.g.,
Text-fig. 7. Harker variation diagrams of Polish jotunites compared to the jotunites from the Hidra Massif, the Bjerkreim-Sokndal Layered Intrusion (Rogaland Province, Norway) and the Korosten Complex (Ukraine); see Table 4 for data on Polish jotunites. B1 – Biliwinowo IG-1, JS1 – Jezioro Szlinokiemskie IG-1, S1 – Sejny IG-1, S2 – Sejny IG-2, U11 – Udryń 11; JW97-18 and JW97-4 after Wiszniewska et al. (2002); HM – Hidra Massif (see Demaiffe and Hertogen 1981); KC-QJ – Korosten Complex (quartz jotunite); KC-J – Korosten Complex (jotunite; see Duchesne et al. 2017); BSLI – Bjerkreim-Sokndal Layered Intrusion (see Vander Auwera et al. 1998)
Text-fig. 8. Major element composition of Polish jotunites as a function of Mg# (MgO/(MgO + FeO_t)), compared to the jotunites from the Hidra Massif, the Bjerkreim-Sokndal Layered Intrusion (Rogaland Province, Norway) and Korosten Complex (Ukraine); see Table 4 for data on Polish jotunites. See Text-fig. 7 for explanation of symbols.
S2-1619). Eu/Eu* ratios for the Sejny Intrusion jotunites (with higher SiO₂ contents) range from 1.17 to 0.8, but for the SAM samples decrease from about 0.83 for Bilwinowo IG-1 down to 0.63 for Udryń 11 (Table 5; Text-fig. 10). The [La/Yb]₉₀ ratio (Table 5) remains at relatively moderate values for the SAM jotunites (averaging 12.25 ± 2) to low values for the Sejny Intrusion jotunites (averaging 8.68 ± 3).

On a multi-element diagram (Table 6; Text-fig. 10), the Sejny Intrusion jotunites have distinctly lower contents of Rb, Th, Nb, Ta, Zr and Hf, whereas the SAM jotunites do not show negative anomalies. Noteworthy, the amount of Sr is constant for the SAM and Sejny Intrusion jotunites, but the SAM pattern shows a prominent negative anomaly, suggesting extensive crystallization of plagioclase (Vander Auwera et al. 1998). Interestingly, the Sejny Intrusion jotunites show a relatively small excess in P, whereas the SAM samples show a slight depletion in P.

DISCUSSION

Variation diagrams, multi-element diagrams, and other geochemical data for jotunites from the boreholes in the SAM (Bilwinowo IG-1, Udryń 11 and Jezioro Szlinokiemskie IG-1) and Sejny Intrusion (Sejny IG-1 and Sejny IG-2) show slight differences in jotinite composition between the two massifs and can be subdivided into two groups. As proposed by Wiszniowska et al. (2002) on the basis of JW97-18 and JW97-4 samples, the Sejny Intrusion jotunites can be referred to as primitive (and similar to the Rogaland jotunites), whereas the SAM jotunites are more evolved. Jotunites are characterised by very high contents of Fe, Ti and P (Vander Auwera et al. 1998). In the SAM, these elements are enriched (TiO₂, 2.13–4.34 wt. %; Fe₂O₃, 14.33–20.71 wt. %; and P₂O₅, 0.5–1.46 wt. %), compared to the Sejny Intrusion (TiO₂, 1.58–2.41 wt. %; Fe₂O₃, 13.68–19.23 (up to 22.66) wt. %;
and P2O5, 0.26–0.94 wt. %) (Table 4). According to Vander Auwera et al. (1998), compositions poor in P2O5, as in the Sejny Intrusion, are referred to as ‘primitive’ to distinguish them from ‘evolved’ jotunites. Primitive and more evolved jotunites are common in other massifs in the Rogaland Province (e.g., Hidra Massif; see Demaiffe and Hertogen 1981).

The Sejny Intrusion jotunites show limited variations in the K2O content, whereas the SAM jotunites display considerable variability in this element (Text-figs 7 and 8), which may be caused by variable degree of contamination by the surrounding host rocks during diapiric emplacement. Additionally, the SAM rocks composition indicates their more evolved character. Jotunites show distinct differentiation in the SiO2 content, with 43.62–47.46 wt. % for the Sejny Intrusion primitive jotunites and 40.56–47.08 wt. % for the SAM evolved jotunites (Table 4). Relatively low SiO2 contents were also reported from the Korosten Anorthosite-Norite Complex (see sample K-12 in Duchesne et al. 2017). Primitive jotunite from BSLI has a high SiO2 content (49.50 wt. %) as indicated by sample B1-1336 only (49.79 wt. %).

According to Vander Auwera et al. (1998), primitive jotunites are depleted in Ta (but not in Nb) and Hf (but not in Zr) relative to the neighbouring REE, whereas Ti shows a small excess. Although the Sejny Intrusion jotunites referred to here as primitive reveal strong depletions in Ta and Hf, their depletions in Nb and Zr are also remarkable (Text-fig. 10). The Sejny Intrusion jotunites show an excess in Ti. Along the path of progressive differentiation from the Sejny Intrusion to the SAM jotunites, a relative depletion of Ti appears, while the relative depletion in Hf and Zr become less pronounced, indicating crystallization of Fe-Ti oxides. All evolved jotunites are clearly depleted in Sr relative to Ce and Nd (Text-fig. 10), which is related to extensive crystallization of plagioclase. Small relative depletions in P, or lack of a phosphorus anomaly in the SAM jotunites, are not characteristic of evolved jotunites, which are usually rich in apatite compared to mangerites (Text-fig. 10). Relatively low

Text-fig. 10. Chondrite normalised REE diagram (A and B) and trace element spidergrams (C and D) for the SAM and Sejny Intrusion jotunites compared to the Bjerkreim-Sokndal primitive jotunites (Vander Auwera et al. 1998). Normalising values from Boynton (1984) and Thompson et al. (1982); data in Tables 5 and 6.
amounts of total REE and low values of [La/Yb]N not present in the SAM rocks (Text-fig. 10). Lower in the primitive Sejny Intrusion jotunites, which is 2017). Thorium shows a huge depletion against REE by a later saturation in apatite that delayed its buffer-decrease in Mg# (Text-fig. 9), which can be explained difference appears in the Eu/Eu* evolution: there is SiO2 contents (Table 4) of the SAM rocks preclude noting that sample locations on diagrams from the Jezioro Szlinokiemskie IG-1 borehole (SAM; samples JS-1225 and JS-1229) are close to sample locations from the Sejny Intrusion and suggest a continuous transition in chemical composition between the Sejny Intrusion and SAM jotunites.

The same regularity is marked by plagioclase and pyroxene compositions in jotunites from the Bilwinowo IG-1, Sejny IG-1 and Sejny IG-2 boreholes. Due to the slightly more anorhistic character of plagioclase in the Sejny Intrusion jotunites and pyroxene richer in Fe in the Bilwinowo IG-1 rocks (which affects the Fe content in the bulk-rock composition), the Sejny Intrusion jotunites can be treated as primitive.

Petrographic features of the jotunites studied, typical of chilled rocks at the margins of anorthosite massifs, are similar to those observed in the Hidra pluton in the Rogaland Province (Demaiffe and Hertogen 1981). These observations have led us to the conclusion that a liquid state existed. The mechanism of its formation may be similar to that of the Rogaland liquid line of descent (LLD). The Rogaland LLD was characterised based on a series of rocks occurring in forms of dykes at the marginal part of anorthosite intrusions like jotunites (hypersthene monzonites), mangerites (hypersthene quartz monzonites) and finally charnockites (hypersthene granites). The original liquid character of jotunites is confirmed by their microtexture. The evolution of the Rogaland LLD from ‘primitive’ jotunites up to charnockites was experimentally confirmed (Vander Auwera and Longhi 1994; Vander Auwera et al. 1998). Text-figs 7 and 8 show that samples from SAM and Sejny Intrusion plot close to those of the Rogaland intrusions and the Korosten Massif, where the LLD was studied (Duchesne et al. 2017). Moreover, the chondrite normalized REE distribution (Text-fig. 10) for Sejny rocks shows their affinity to BSLI primitive jotunites, which can be proven to have a similar character as the Sejny Intrusion jotunites. An overall resemblance can also be noted in the multi-elemen spidergrams (Text-fig. 10). The fractionation process could then lead to more evolved jotunites. On the other hand, charnockites were also found in the SAM (Bagiński et al. 2007), which additionally confirms a continuous transition to more silica-rich rocks. Rock evolution could involve some crustal contamination on its way to the surface. The general resemblance of the Polish jotunites with those from Rogaland once more may be evidence that they have been produced as a result of the same mechanism from a similar composition gabbronoritic crustal source (Duchesne et al. 2017), which is additionally supported by Sm/Nd and Re/Os isotopic data.

It is worth noting that jotunites in the form of chilled margins have been determined as ‘primitive’, and these in the form of dykes as ‘evolved’ (Vander Auwera et al. 1998), which matches the Polish jotunites – chilled margins occur in the jotunites from the Sejny Intrusion, and jotunitic dykes are present in the SAM.

CONCLUSIONS

Variations in mineral and whole-rock compositions indicate the presence of primitive jotunites in the Sejny Intrusion and evolved jotunites in the Suwałki Anorthosite Massif. They also point to a different evolution of the two massifs: either the SAM and the Sejny Intrusion jotunites came from two different magma chambers or, more convincingly, the jotunite melts came from one magma chamber and their separation took place at a later stage, due to the fact that the Mazury Complex was created as a result of bimodal, multistage magmatism. It was stressed by Charlier et al. (2009) that individual differentiation trends for the Krzemianka and Udryń ore deposits in the SAM indicate that different parental magmas may have involved, and thus that the SAM is a composite pluton. The complexity of the SAM is indicative of its multistage formation and evolution of two or more influxes of magma into the emplacement level. Subsequent additional processes led to the formation of more evolved jotunitic magma in the SAM compared to the Sejny Intrusion.

Petrographic features of the jotunites, typical of chilled rocks with microtexture, at the margins of anorthosite massifs led to the conclusion about the liquid character of the jotunitic melt and evolution of the liquid line of descent (LLD) from ‘primitive’ jotunites up to charnockites.

On the basis of melting experiments on gabbroic rocks from the Harp Lake Massif, Labrador, and
the Rogaland jotunites under anhydrous conditions and at low to intermediate pressure (from 0.1 MPa to 1300 MPa), performed by Vander Auwera et al. (1998), it has been shown that melts of jotunitic composition can be parental to anorthosites. In view of their petrological and geochemical characteristics, the SAM and Sejny Intrusion jotunites are considered as possible candidates for the anorthosite source rocks in both massifs.

Acknowledgements

The authors would like to thank the journal reviewers, Profs. A. Gawda and L. Shumlyansky, for their constructive criticism and helpful comments to the manuscript. Many thanks are expressed to Prof. A. Gawda for her help in determining the feldspar stability fields, and to Prof. R. Macdonald and Jordan Todes for linguistic correction of the text.

REFERENCES

