The occurrence of four interglacials younger than the Sanian 2 (Elsterian 2) Glaciation in the Pleistocene of Europe

LESZEK LINDNER 1 & BARBARA MARCINIAK2

1 Institute of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
2 Institute of Geological Sciences, Polish Academy of Sciences, Twarda St. 51/55, PL-00-818 Warszawa, Poland. E-mail address: bmarcini@twarda.pan.pl

ABSTRACT:

Documented examples indicate the occurrence of four interglacials younger than the Sanian 2 (= Elsterian 2, Okanian) Glaciation in the Pleistocene of Europe. These are, from the oldest, the Mazovian (= Holsteinian), Zbójnia (= Reinsdorf), Lubavian (= Schöningen?) and Eemian interglacials. These interglacials are characterised by different vegetation successions, and occasionally marine deposits resulting from the global sea level rise are present in the region surrounding the English Channel, North Sea and Baltic Sea. Palaeosol horizons within loess sections in the Ukraine also correspond to these interglacials.

INTRODUCTION

Marine deposits are stratigraphically the most important in the geology of pre-Quaternary formations, as they are characterised by a wide lateral distribution, as well as by relatively well preserved faunal remains and largely continuous sedimentation. These remains are represented both by index species and by faunal assemblages that characterize particular stratigraphic periods or zones (GIGNOUX 1950).

In the Quaternary, where the main stratigraphic units are attributed to the rhythm of global climatic changes (see RÓŻYCKI 1980, LINDNER 1992), marine deposits also play an important role (see FLINT 1947, WOLDSTEDT 1969, CHALINE 1972, WEST 1977, BOWEN 1978). However, marine deposits of Quaternary age seldom occur in continental sections, mainly because of the more or less similar extent of older and recent seas in the Quaternary. Such deposits are most typical for interglacial periods, during which the disappearance of an ice-sheet was of a longer duration, and the released water caused a rise of global sea level (see NILSSON 1983, LINDNER 1992, MOJSKI 1993, EHLERS 1996). Marine transgressions on low-lying land areas took place at that time as in the Holocene, which is considered to be a model of interglacial conditions (STARKEL 1990).

Until quite recently, only two well documented marine transgressions were acknowledged in Europe (excluding the Mediterranean area) in the Middle and Younger Pleistocene (see LINDNER 1988, 1991, 1992). Traces of an older transgression were discovered for the first time as interglacial marine deposits in the Lower Elbe draina-
248 LESZEK LINDNER & BARBARA MARCINIAK

g system area, particularly in the area of Schleswig – Holstein, from which the term Holsteinian Interglacial (Sea) is derived (see Gottzsche 1897, Grahle 1936, Woldstedt 1969, Woldstedt & Duphorn 1974, Behre & al. 1979). Marine deposits of a younger transgression were discovered for the first time in the Eem river drainage system at the Dutch coast of the North Sea (see Madsen & al. 1908, Zagwiin 1961, Jelgersma & al. 1979), which gave the name to the Eemian Interglacial.

For many years both interglacials (Holsteinian = Mazovian = Likhvin and Eemian = Mikulinian) were considered to be not only the most typical but also the only ones in the post-Elsterian 2 (= post-Sanian 2, = post-Okanian) part of the Pleistocene (see Woldstedt 1969, Chaline 1972, Bowen 1978). This opinion was questioned by discovery of the two new interglacial units, an older termed the Dönnitz-Warmzeit and a younger one termed the Rügen-Warmzeit (?) in the Pleistocene of north-eastern Germany (cf. Cepek 1967, Cepek & Erd 1982, Erd 1973, 1978).

An important argument supporting this discovery was the determination in marine deposits from this part of the Pleistocene (see Shackleton & Opdyke 1973) traces of four climate warmings designated as Oxygen Isotope Stage (OIS) 11, dated at 440-367 ka; OIS 9, dated at 347-297 ka; OIS 7, dated at 251-195 ka; and OIS 5e, dated at 128-118 ka. The oldest of these stages (OIS 11) was correlated by the majority of workers with the Holsteinian Interglacial, and the

Fig. 1. Location of some important post-Sanian 2 (= post-Elsterian 2) interglacial sites in Europe
1 – maximum extent of the ice sheet during the Sanian 2 (Elsterian 2) Glaciation; 2 – cited interglacial sites; 3 – maximum extent of the ice sheet during the Vistulian (= Weichselian = Valdaynian) Glaciation
youngest one (OIS 5e) with the Eemian Interglacial (see Bowen & al. 1986). The remaining stages (OIS 9 and 7) are correlated with the Dönnitz and Rügen interglacials respectively (see Wiegank 1982).

Taking into account the above-mentioned facts, this paper presents further evidence to support this concept. The paper includes the results of investigations from 21 sites with deposits younger than the Sanian 2 Glaciation (= Elsterian 2, = Okanian) and older than the Vistulian Glaciation (= Weichselian, = Valdaynian) from Europe (Text-fig. 1). The results of investigations from four sites with interglacial lake deposits (Krepiec, Zbójno, Losy and Bedlno) from Poland (Text-figs. 2-6) with palynological data from most of them (Text-fig. 6), as well as two loess sites containing interglacial paleosols (Bojanice and Korshov) from the north-western Ukraine (Text-fig. 7) are presented in more detail. A tentative chronostratigraphic scheme of the four post-Sanian 2 (= post-Elsterian, = post-Okanian) lithostratigraphic units of Europe is presented on the basis of all the described sites (Text-fig. 8).

INTERGLACIAL SITES WITH LAKE DEPOSITS

Four sites in Poland with lake deposits (Krepiec, Zbójno, Losy and Bedlno) of four interglacials (Mazovian, Zbójnian, Lubavian and Eemian) with different floral successions are presented.

Krepiec

The geomorphological and geological setting of lake deposits at Krepiec (Text-figs 1 and 2), located east of Lublin in the northern part of the Lublin Upland, was described by Harasimuk & Henkiel (1981). The deposits were assigned to the Mazovian Interglacial on the basis of palynological (Janczyk-Kopikowa 1981) and diatom data (Marciniak 1980, 1983).

According to the geological data (Text-fig. 2) the deposits in borehole 16 are over 20 metres thick and occur as a series of silt and diatomite with a peat intercalation (bed 6 on Text-fig. 2) as well as peat and gyttja on top (bed 7). These deposits rest on fluviatile sand and gravel, 4 to 8 metres thick (bed 5) and further down on till, up to 10 metres thick (bed 4). Thermoluminescence (TL)-dates of 511 ka and 502 ka allow correlation of the till with the Sanian 2 Glaciation sensu Lindner (1988, 1992) or with the Wilgian Glaciation sensu Mojski (1993). Older Pleistocene deposits in this section are ice-dammed silt, 4-6 metres thick (bed 3), from the period of the ice-sheet advance of this glaciation and pre-Pleistocene (pre-Glacial) debris, clay and waste-clay (bed 2), covering the Cretaceous marls (bed...
that are occasionally exposed in the investigated area.

Lake deposits of the Mazovian Interglacial have been TL-dated in their lower part at about 400 ka (Text-fig. 2). Palynological analysis (JANCZYK-KOPiKOWA 1981, 1991) shows that accumulation took place during four periods (M I – M IV) of vegetation development, with the climatic optimum in period M III being marked by the presence of *Vitis* and the predominance of *Carpinus* and *Abies* (Text-fig. 6A). According to diatom analysis (MARCINIAK 1980, 1983), the lower part of the deposits is characterised by the predominance of nannoplanktonic diatoms (*Stephanodiscus* and *Cyclotella*). The middle part, in turn, shows an increase in the number of littoral and rheophilous species, while forms pointing to a further shallowing and overgrowing of the lake by macrophytes dominate in the upper part.

By the end of the Mazovian Interglacial these deposits were cut by a river, creating a channel filled with sand and gravel with a diatomite intercalation, over 20 m thick in total (bed 8 on Text-fig. 2). TL-datings from their upper part reveal about 350 ka, pointing to their accumulation during the Liviecian Glaciation and/or Zbójnian Interglacial (Lindner 1992). The overlying humic sand with silt and peat intercalations, reaching a total of 10 m (bed 9) and TL-dated at about 334 ka, as well as the silt and sand on top, should correspond to the Zbójnian Interglacial.

The overlying till, about 6 m thick (bed 10 on Text-fig. 2) has been interpreted as a remnant of the Scandinavian ice-sheet till covering the area during the Odranian = Drenthian = Dnieperian Glaciation (LINDNER & al. 1991). The overlying loess, up to 7 m thick (bed 11), is most probably the so-called younger loess, (MARUSZCZAK, 1996) of the Vistulian = Weichselian Glaciation. The youngest Quaternary deposit in the area is the Holocene fluvial sand and gravel, 8 m thick (bed 12 on Text-fig. 2).

Zbójno

The geomorphological and geological setting as well as the palynological data of the deposits from the Zbójno site (Text-figs 1 and 3), north-east of Przedbórz in the western part of the Holy Cross Mts. region, discovered by

Fig. 3. Geological cross-section through the Zbójnian (= Reinsdorf) Interglacial deposits at Zbójno near Przedbórz, with TL datings; Mazovian Interglacial: 1 – fluvial sand with gravel; Liviecian (?) Glaciation: 2 – ice-dammed silt; Zbójnian Interglacial: 3 – fluvial sand with gravel; 4 – peat; 5 – peaty silt; Odranian Glaciation: 6 – glaciofluvial sand; 7 – till; 8 – ice-dammed silt; 9 – glaciofluvial sand with gravel; Holocene: 10 – sand with gravel and lag deposit in its lowermost part (fluvial); 11 – recent soil; part of the section 1/80 with palynological data (see LINDNER & BRYCZYŃSKA 1980) is marked with bold line.
The geological data reveal that the deposits rest on sands with gravel (bed 1 on Text-fig. 3) and silts (bed 2). They reach up to 3 m thick and consist of fluvial sand with gravel (bed 3 on Text-fig. 3), peat (bed 4) as well as peaty silt (bed 5) on top. The ice-dammed silt (bed 2) below was TL-dated at about 388 ka and derives from the Livieian Glaciation or the terminal part of Mazovian Interglacial. Fluvial sand with gravel (bed 1) is probably of the Mazovian Interglacial age.

Palynological analysis of the peat (bed 4 on Text-fig. 3) from borehole 1/80 reveals four periods of floral development (Zb I – Zb IV) representing a succession different from that of the preceding Mazovian Interglacial. The Zb I period (Text-fig. 6B) is characterised by pine forests with a small admixture of Betula, Quercus and Corylus. During the climatic optimum, along with the decrease of pine, a rapid development of Tilia took place, reaching 48% (Zb IIa), and – following a decrease of Tilia to 20% – an increase of Alnus, Carpinus, Picea and Corylus with the presence of Quercus (Zb IIb). The post-optimum period of the interglacial is characterized at first (Zb III) by domination of coniferous trees, followed by a further increase of pine content (Zb IV). Comparison of the position of these deposits with the lake series of the Mazovian Interglacial preserved near Sewerynów, east of Przedbórz (see Jurkiewiczowa & Mamakowa 1960), shows that these deposits are younger than this interglacial (see Lindner 1982, Marks & al. 1995) and belong to the Zbójnian Interglacial.

In the site under discussion, lake and marsh deposits of the Zbójnian Interglacial were eroded at the top by glacial meltwater during the advance of the subsequent ice-sheet. This is shown by an up to 2 m thick sand (bed 6 on Text-fig. 3), TL-dated at about 236 ka. The sand, as well as older interglacial deposits are covered by till, from 0.5 to 4.0 m thick (layer 7), TL-dated at 239 and 256 ka. The geological setting of the above-mentioned glacial deposits, in a larger area (see Lindner 1982), and their TL dates allows them to be correlated with the older Middle Polish Glaciation, determined as the Odranian = Drenthian = Dnieperian Glaciation (Lindner 1988; Lindner & al. 1991; Lindner & Marks 1994). The accumulation of ice-dammed silt preserved above (bed 8 on Text-fig. 3) and sand with gravel covering it (bed 9) can also be attributed to this glaciation. The youngest Quaternary is represented by Holocene sand with gravel and lag deposits in its lowermost part (bed 10 on Text-fig. 3) as well as recent soil (bed 11).

Losy

The geomorphological and geological setting of the lake deposits from the Losy site (Text-figs 1 and 4), near Lubawa on the western slope of the Lubawa Elevation in the western part of the Masurian Lakeland, as well as the palynological data, were investigated by Krupinski & Marks (1985, 1986).

The collected data reveal that these deposits, discovered by Jentsch & Michael (1902), rest on glaciofluvial sand (bed 1 on Text-fig. 4), TL-dated at 273 ka, which probably represents the terminal part of the Odranian Glaciation. They are developed as two beds of lake marl visible at the bottom and on the slopes of the exposure. The older layer is a grey lake marl (bed 2), 2 to 5 m thick, while the younger one is a yellow-orange lake marl (bed 3) up to 10 m thick.

Palynological analysis of both the beds of lake marl penetrated in boreholes L2 and L3 (Text-fig. 4) shows that the preserved plant remains document four (Lu I – Lu IV) periods of interglacial vegetation development. In the Lu I period (Text-fig. 6C), birch scrubs or forests with Pinus and Larix dominated, while in the Lu II period these plants were accompanied by trees with higher thermal requirements (Picea, Quercus, Ulmus) as well as Typha latifolia. The Lu III period was characterized at first by mixed forests, followed by oak-birch forests with occasional Tilia. Period Lu IV, besides a wide occurrence of Quercus, was characterized by the appearance of Corylus, together with Ulmus, Alnus, and Tilia.

According to Krupinski & Marks (1985, 1986) the much later appearance of Corylus pollen compared to that of Tilia, and a large admixture of Larix and Ulmus, distinguishes this succession from that typical of the Eemian, as well as from those characterizing other interglacials known in Poland. This distinctive pollen diagram allows the recognition of a new interglacial – the Lubavian Interglacial. The deposits from this site also reveal diatom assemblages (Tuszyńska-Gruza 1984 and B. Marciniak,
Fig. 4. Geological cross-section through the Lubavian (= Lublinian, Schönigen ?) Interglacial deposits at Losy near Lubawa with TL datings, after KRUPINSKI & MARKS (1986, modified); Odranian Glaciation: 1 - sand; Lubavian Interglacial: 2 - grey lake marl; 3 - yellow-orange lake marl; Wartanian Glaciation: 4 - sand with gravel; 5 - till; parts of the sections L2 and L3 with palynological data (see KRUPINSKI & MARKS 1986) are marked with bold line.

Fig. 5. Geological cross-section through the Eemian Interglacial deposits at Bedlno near Końskie (after PRAZAK 1975 and LINDNER in: CIESLA & LINDNER 1990, 1991); Odranian (Wartanian?) Glaciation: 1 - older phase till; 2 - interphase fluvial (?) sand; 3 - younger phase till; 4 - glaciofluvial sand with fine gravel; 5 - glaciofluvial gravel with sand; Eemian Interglacial: 6 - sandy gyttja with bituminous shale intercalation; 7 - peat with gravel in its uppermost part; Vistulian Glaciation: 8 - deluvial and eolian (?) sand; 9 - silty sand with fine gravel; fluvial; 10 - silt with gravel and sand intercalations; 11 - fluvial sand with gravel; Holocene: 12 - deluvial sand; 13 - silty sand with gravel; 14 - recent soil; 15 - bank; part of the section 1/50 with palynological data (see ŚRODON & GOLABOWA 1956) is marked with bold line.
unpublished data) different from those known from the lake deposits of the Eemian Interglacial (see MARCINIAK & KOWALSKI 1978).

The Lubavian Interglacial deposits at Losy are covered by sand with gravel (bed 4 of Text-fig. 4), the accumulation of which caused erosional shearing of the upper part of the lake chalk. The sand was TL-dated at 230 ka while the covering till (bed 5) at about 181 ka. These dates as well as the geomorphological - geological setting of the surrounding area allow the sand with gravel and the overlying till to be linked to the Wartanian Glaciation, while the older deposits of the Lubavian Interglacial represent the time span separating this glaciation from the Odranian Glaciation (KRUPINSKI & MARKS 1985, 1986).

Bedlno

The geomorphological and geological setting of the lake-marsh deposits from the Bedlno site (Text-figs 1 and 5), west of Końskie in the northwestern part of the Holy Cross Mts., was investigated in detail by PRAZAK (1975) and LINDNER (in: CIESLA & LINDNER 1990, 1991). The palaeobotanical picture of these deposits, discovered by PASSENDORFER (1931), was presented by SRODON & GOŁĄBOWA (1956).

All the obtained data show that the lake-marsh deposits of this site, noted in section 1/50 (Text-fig. 5), are represented by sandy gyttja with a bituminous clay intercalation (bed 6 on Text-fig. 5) as well as by overlying peat with gravel at the top (bed 7). They are over 5 m thick and infill a depression, in older glacial and fluvioglacial deposits.

Palynological and macrofloral analysis of the deposits has shown four periods (E I - E IV) of development of an interglacial flora. Period E I (Text-fig. 6D) is characterised by the presence of pine-birch forests with traces of trees of higher thermal requirements (Quercus, Ulmus, Tilia, Carpinus, Corylus, Alnus). Period E II represents forests of the climatic optimum with the predominance of Quercus, Corylus, Tilia and the first traces of Picea. In period E III Picea and Abies dominate, with an admixture of Alnus as well as Pinus and Betula, while period E IV is characterised by pine-birch forests with Picea and Larix. According to ŚRODON & GOŁĄBOWA (1956) the deposits from Bedlno comprise, apart

![Fig. 6. Synthetic diagrams of four post-Sanian 2 (= post-Elsterian 2) interglacial pollen successions in Poland: Mazovian Interglacial (JANCZYK-KOPIKOWA 1981), Zbójnian Interglacial (LINDNER & BRYCZYŃSKA 1980), Lubavian Interglacial (KRUPINSKI & MARKS 1986) and Eemian Interglacial (ŚRODON & GOŁĄBOWA 1956); compiled by JANCZYK-KOPIKOWA (1991) and the authors](image-url)
from the Eemian Interglacial (E I – E IV), tundra plants from the terminal part of the older glaciation as well as tundra vegetation from the Vistulian Glaciation.

Deposits older than the Eemian Interglacial are till (bed 1 on Text-fig. 5) of the older phase of the Odranian (Wartanian?), fluvial sand (bed 2) of the younger interphase, till (bed 3) of the younger phase of this glaciation and glaciofluvial sand with gravel (bed 4). Immediately below the Eemian deposits there is glaciofluvial gravel with sand (bed 5) resulting from erosion during the Odranian (Wartanian?) Glaciation. From the Vistulian Glaciation there is sand (bed 8 on Text-fig. 5) of deluvial and eolian (?) origin as well as fluvial sand with gravel (bed 9), valley silt with gravel and sand intercalations (bed 10) as well as fluvial sand with gravel (bed 11). The Holocene is represented by deluvial sand (bed 12) and silty sand with gravel (bed 13) as well as by recent soil (bed 14) and a bank (bed 15).

SITES WITH INTERGLACIAL PALEOSOLS

Four paleosol horizons are preserved in both of the loess sections (Bojanice and Korshov) presented below, giving the possibility of inter-correlation in spite of frequent cutting by ice-wedge pseudomorphoses. In the first section (Bojanice), the paleosols occur above till of the Okanian Glaciation, unequivocally correlated in central and western Europe with the Elsterian 2 = Sanian 2 Glaciation (LINDNER 1988, LINDNER & MARKS 1994, EHLERS & al. 1995).

Bojanice

The loess section at Bojanice (Text-figs 1 and 7), situated west of Sokal in the western part of the Volhynia Upland (NW Ukraine), has been known for about twenty years (see BOGUTSKY & al. 1980, BOGUCKI & RACINOWSKI 1994, BOGUCKI & al. 1994, 1995; MARUSZCZAK 1994, 1996; NAWROCKI & al. 1996; LINDNER & al. 1998).

The section (Text-fig. 7) comprises Pleistocene deposits up to 25 m thick and exposed over several hundred metres. These deposits rest on Cretaceous marls and comprise two loess horizons, each 1-3 metres thick. The older loess probably belongs to the Donian (?) = Elsterian 1 (?) Glaciation, while the younger – TL-dated at 496 ka, together with the overlying till – TL-dated at 473 ka and 530 ka – corresponds to the Okanian (= Sanian 2) Glaciation. The loesses are separated by a layer of sand with lag deposits in its lower part, TL-dated at 523 ka and probably derived from the Ferdynandovian (?) = Voigtstedt (?) = Lubny (?).

A forest paleosol of the Sokal horizon (PI. 1, Fig. 4) correlated with the Mazovian = Holsteinian = Likhvinian Interglacial (MARUSZCZAK 1996, NAWROCKI & al. 1996, LINDNER & al. 1998), occurs above an Okanian Glaciation till. A thin chernozem, TL-dated at 342 ka, occurs in the uppermost part of the paleosol. It is covered by a thin loess correlated with the Livieckian Glaciation in Poland and with the accumulation of the Orel Loess in Central Ukraine (see GOZHIK & al. 1995). A forest paleosol is developed on this loess, the parent rock of which was TL-dated at 326 ka. The paleosol corresponds to the Luck horizon (Pl. 1, Figs 3-4), and is correlated with the Dömmitz Interglacial in Germany (GOZHIK & al. 1995) and with the Zbójnik Interglacial in Poland (MARUSZCZAK 1996, NAWROCKI & al. 1996, LINDNER & al. 1998). Two loess horizons of the Middle Polish Glaciations as well as another forest paleosol horizon (complex) separating the loesses (Text-fig. 7) occur above the paleosol. The older loess – TL-dated at 318 ka and 360 ka, as well as at 277 ka and 280 ka – represents the Odranian = Dnieperian = Drenthian Glaciation, while the younger (with chernozem in its lowermost part) – TL-dated at 179 ka and 167 ka – corresponds to the Wartanian Glaciation. The loesses, up to several metres thick, are separated by a paleosol complex of the Korshov horizon (Pl. 1, Fig. 2), the parent rock of which was TL-dated at 243 ka and 238 ka as well as at 180 ka, and which was connected with the Lubavian = Lublinian Interglacial. A forest paleosol of the Horokhov horizon (Pl. 1, Fig. 1, 2) is developed on the younger loess, which is correlated with the Eemian Interglacial (MARUSZCZAK 1996, NAWROCKI & al. 1996, LINDNER & al. 1998). The paleosol is covered by loess of the Vistulian = Weichselian = Valdaynian Glaciation, with a chernozem horizon in its lower part, as well as with initial tundra paleosols in the upper part of the section. This loess, 6-8 m thick, was TL-dated at about 120 ka to about 22 ka (Text-fig. 7).

Korshov

The Korshov loess section, south of Luck in the central part of the Volhynia Upland (NW
Fig. 7. Stratigraphical position and TL datings of the loess section at Bojanice and Korshov near Lvov, after Lindner & al. (1998)

1 – Cretaceous marl; Pleistocene: 2 – till; 3 – sand and gravel with lag deposit in the lowermost part; 4 – sand; 5 – loess and loess-like deposit; 6 – forest paleosoil illuvial horizon (B); 7 – chernozem; 8 – tundra soil; 9 – solifluction deformations; numbers along the section indicate TL-age in ka after Butrym (Bogucki & al. 1995, Shelkoplys & al. 1985, in parentheses after Shelkoplys (Shelkoplys & al. 1985, Shelkoplys & Khrishtoforova 1987).
TENTATIVE CORRELATION

The studies of Ciepek (1967) and Erd (1973, 1978) cited in the first part of this paper regarding the identification of four interglacials younger than the Elsterian 2 Glaciation in Germany, as well as those of Jersak (1973) and Makowska (1977) regarding a possible interglacial within the Middle Polish Glaciation in Poland, inclined Różyczki (1978, 1980) as well as Lindner (1978, 1980) to divide the Middle Polish Glaciation into two separate glaciations (Odranian, Wartanian) with the Lublinian Inter- glaciation in between. This division, as well as the investigation of organic deposits from Zbójno (Lindner & Bryczyńska 1980) older than this glaciation and younger than the Mazovian Interglacial, as well as a later study of organic deposits from Losy near Lubawa (Krąpinski & Marks 1985, 1986), of different age from the Eemian Interglacial, have been the basis of distinguishing four interglacials in Poland as well: Mazovian, Zbójnian, Lubavian = Lublinian, and Eemian, correlated with the Oxygen Isotope Stages 11, 9, 7 and 5e of deep-sea deposits (Lindner 1984, 1988).

This interpretation of the stratigraphy of the post-Sanian 2 (= post-Elsterian 2) part of the Pleistocene, in which the above-mentioned interglacials are separated by the Livieciac, Odranian and Wartanian glaciations, has gained wide acceptance (i.e. Baraniecka 1990, Słowna & Makowska 1991, Krzywicki & Lisicki 1993, Lisicki 1996). An additional strong argument in support of this interpretation is the occurrence of four forest paleosols above the till of the Sanian 2 (= Okanian) Glaciation intercalated with loesses, which documents four interglacial periods younger than this glaciation in the Bojanice section in the Wolhynia Upland (Bożutski & al. 1990; Maruszczak 1994, 1996; Nawrocki & al. 1996; Lindner & al. 1998).

The stratigraphy presented here is a basis for correlation of the four last interglacials in the post- Sanian 2 (= post-Elsterian 2, = post-Okanian, = post-Anglian) part of the Pleistocene of Europe (Text-fig. 8).

Mazovian (Holsteinian, Oxygen Isotope Stage 11) Interglacial

The first (oldest) of these interglacials, distinguished in Poland as the Mazovian Interglacial (Text-fig. 2), is correlated with the Holsteinian Interglacial in Europe, both in areas within the range of Scandinavian glaciations (i.e. Pritzwalk, Schöningen, Devils Hole and Fladen sections on
Text-fig. 1), as well as in extraglacial areas (i.e. Pracalux section on Text-figs 1 and 8). Deposits of the Swanscombe unit in the British Isles, correlated with the OIS 11 (see Bowen & al. 1989), can also be equated with this stratigraphical position. In the eastern part of the Baltic Sea basin the equivalents of this climatic warming are marine and continental deposits of the Likhvinian s.s. Interglacial = Butenai (Zubakov & Borzenkova 1990). In loesses of the NW Ukraine (Bojanice and Korshov sections) this interglacial corresponds to the period of development of interglacial forest paleosol of the Sokal horizon (Text-fig. 7), while in the North Sea area it most probably equates with the Devils Hole Inter­glacial, correlated with the OIS 11 (Text-fig. 8).

The Alexandrian Interglacial in Belarus is correlated with the Mazovian Interglacial (i.e. Yelovicheva 1997). In Lithuania its equivalent is the Butenai Interglacial, Electron Spin Resonance (ESR)-dated at 400-300 ka (Gaigalas & Molodkov 1997), and corresponds to the stratigraphical position of the bi-optimal Holsteinian (s.l.) Interglacial (see Satkunas 1997). In all probability, the first (main, old) climatic optimum of this interglacial from the Kolodezhny Rov (Text-fig. 1) in Belarus should be correlated with the Holsteinian Interglacial s.s. (see Yakubovskaya 1976). On the Russian Plain, in the Chekalin section the main interglacial optimum corresponds to lake deposits of the Likhvinian s.s. Interglacial (see Bolikhovskaya & Suda­kova 1996).

During the younger climatic cooling (Fuhne, Liviecian), the Scandinavian ice sheet probably reached only the area of NE Poland and, possibly, NE Germany as well (Lindner & Marks 1994). The remaining area of N and NW Europe was subjected at this time to periglacial conditions, favouring the accumulation of loess (Lindner 1991, Maruszczak 1996).

Zbőjnian (Reinsdorf, OIS 9) Interglacial

The second of the identified interglacials is known in Poland as the Zbőjnian Interglacial and, in Germany (i.e. Schöningen, Pritzwalk sections on Text-fig. 1), as the Reinsdorf Interglacial (Text-fig. 8) or as the Domnitz (= Wacken) Interglacial (Nilsson 1983). In the Netherlands the climatic warming of the Hoogeveen and Bantega inter-

Fig. 8. Stratigraphical correlation of the post-Sanian 2 (= post-Elsterian 2) interglacial and glacial units in Europe
stadials (Zagwln 1986) can possibly be correlated with the Zb6jnian Interglacial, while in the North Sea, it corresponds to the Norwegian Trench Interglacial (in the Troll section on Text-fig. 1), correlated with the OIS 9 (Text-fig. 8), (Sejrup & Knudsen 1993). In France, in the Massif Central (the Praclaux section on Text-fig. 1), the Landos Interglacial is located at this stratigraphical position (Text-fig. 8), while in Normandy (the Tourville section on Text-fig. 1) the global sea-level rise associated with this interglacial is recorded in the horizon Elbeuf 3 (= TOUB) (Text-fig. 8). TL datings of these deposits are to 313 ± 33 ka, while Infrared Stimulated Luminescence (IRSL) datings give results of 314 ± 32 ka (Balescu & al. 1997).

The stratigraphical position of the Zb6jnian Interglacial may correspond, in the British Isles to the Hoxnian Interglacial, the deposits of which are correlated with the OIS 9 (Bowen & al. 1989). In the Russian plain the Zb6jnian Interglacial is located at the stratigraphical position of the Chekalinius Interglacial (Zubakov & Borzenkova 1990, Bolkhovskaya & Sudakova 1996), while in Belarus it probably corresponds (?) to the Smolensk Interglacial (i.e. Yelovicheva 1997). In the Koldzhny Rov section (Text-fig. 1) its possible equivalent is the second climatic optimum of the Alexandrian Interglacial (see Yakubovskaya 1976). In the loess section of NW Ukraine (Bojanice, Korshov) the development of a forest paleosol (complex) of the Korshov horizon took place at that time (Text-fig. 8).

The younger glaciation is named in Europe the Odranian (= Drenthian, = Dnieperian) Glaciation. Glacial deposits of this age spread from the Netherlands through Germany, Poland, Czech Republic, Belarus and Ukraine to Russia (Lindner 1988). Its equivalent in the British Isles is the Wolstonian Glaciation. Beyond the extent of the ice sheet of this glaciation, the accumulation of a loess horizon took place (Lindner 1991, Maruszczak 1996).

Lubavian (Schoningen?, OIS 7) Interglacial

The third of the identified interglacials, known in Poland as the Lubavian = Lublinian = Pilician Interglacial, corresponds in NE Germany (in the Ropersdorf section on Text-fig. 1) to the Uecker Interglacial (Erd 1987) and, in eastern Lower Saxony (the Schoningen section on Text-fig. 1) possibly to the Schoningen Interglacial. The deposits of this unit have been Uranium/Thorium (U/Th)-dated at 180 ka and 227 ka (Heinis in: Urban 1995). This period is documented in Lithuania (in the Sniaigupule section on Text-fig. 1) as the Sniaigupule Interglacial (Kondratiene 1996). In France, the Le Bouchet Interglacial in the Massif Central (the Le Bouchet section on Text-fig. 1) should correspond to this stratigraphic position, while in Normandy (the Tourville section on Text-fig. 1) its equivalent is the next marine transgression expressed by deposits of the Elbeuf 2 (= TOUD) horizon (Text-fig. 8). The TL age of these deposits is 198 ± 26 ka, and the IRSL age is 196 ± 23 ka (Balescu & al. 1997). In the North Sea (the Devils Hole section on Text-fig. 1), their equivalents are marine deposits which, according to Sejrup & Knudsen (1993), correspond to the Holsteinian Interglacial and are correlated with OIS 7 (Text-fig. 8). The Stanton Harcourt deposits are correlated with this stage in the British Isles (Bowen & al. 1989). In loess sections of NW Ukraine (Bojanice, Korshov), this interglacial is documented by a forest paleosol (complex) of the Korshov horizon (Text-fig. 9), while in Belarus it should correspond to the Shklovian Interglacial (i.e. Yelovicheva 1997). In Lithuania its equivalent is probably the Sniaigupule Interglacial (Kondratiene 1996; Gaigalas 1997; Satkunas 1997). In the Mediterranean Sea basin the warming caused the appearance of a marine malacofauna of Senegal type with Strombus bubonius, U/Th dated at about 210 ka (Butzer 1975). Most probably the Pre-Tyrhenian transgression, U/Th dated in the region of Almeria (Spain) at about 180 ka, can be also placed in this period (Hillaire-Marcel & al. 1986).

The following Wartanian Glaciation occurs in Germany, Poland and Belarus as a distinct, separate advance of the Scandinavian ice sheet. However, recent investigations in Poland suggest that the ice sheet advanced more to the south than usually accepted and that it occasionally occupied a larger area than the previous glaciation (see Marks & al. 1995).

Eemian (OIS 5c) Interglacial

The fourth and last of the described interglacials is known from the Netherlands through Germany, to Poland and the North Sea as the Eemian Interglacial (Text-fig. 8). In many sites it is documented by both continental and marine
deposits, correlated by the majority of workers with the OIS 5e. In the North Sea area (the Apholm, Roar and Staffjord sections on Text-fig. 1), they have been recognised by Sturup & Knudsen (1993). In the eastern part of the North Sea basin their continental equivalent are the Mikulian Interstadial deposits. In France, in the Massif Central (the Ribains and Le Bouchet sections on Text-fig. 1) the Ribains Interstadial (de Beauleau & Reille 1995) is situated at this stratigraphic position, while in Normandy, in the Tourville section (Balescu & al. 1997), (Text-fig. 1) it corresponds to the Elbeuf 1 deposits (Text-fig. 8). In the British Isles the period is known as the Ipswichian Interstadial (Bowen & al. 1989). In the loess sections of NW Ukraine (Bojanice, Korshov) this interstadial is documented by a forest paleosol (complex) of the Horokhov horizon (Text-fig. 8), while in Belarus it is represented by the Muravian Interstadial (see Yelovicheva 1997). In Lithuania it corresponds to the Merkine Interstadial (Kondratieiene 1996, Satkunas 1997). The global sea level rise caused older Tyrrenian transgression in the Mediterranean Sea basin expressed, among other criteria, by re-invasion of the marine malacofauna of Senegal type, U/Th-dated at about 127 ka (Lalou & al. 1971) and at about 128 ka (Hillare-Marcel & al. 1986).

The last Pleistocene Glaciation (Vistulian, Weichselian, Valdianian, Ipswichian) was a period during which glacial deposits, loesses, fluvioglacial or deluvial deposits covered the Eemian Interstadial deposits in Europe.

FINAL REMARKS

The data presented here allow the identification of traces of four interglacials younger than the Sanian 2 (Elsterian 2, Okanian) Glaciations in the Pleistocene of Europe. From the oldest they comprise: 1 – Mazovian (= Holsteinian, Likhvinian, Praclaus); 2 – Zbójnian (= Reinsdorf, Landos, Chekalian); 3 – Lubavian (= Schöningen?, Le Bouchet); 4 – Eemian (= Ribains, Mikulian). They are characterized by different vegetation succession, and their sections in the region of the English Channel, North Sea and Baltic Sea contain marine deposits documenting a global sea level rise.

In the light of the present state of knowledge on Pleistocene climatic changes registered in deep marine deposits, the Mazovian (= Holsteinian) Interstadial corresponds to OIS 11, the Zbójnian (= Reinsdorf) Interstadial to OIS 9, the Lubavian (= Schöningen?) Interstadial to OIS 7, while the Eemian (= Ribains) Interstadial corresponds to OIS 5e. Similar correlation was recently presented for the Netherlands and Germany (see Urban 1997). Each of the interstadials also correspond to the forest paleosols preserved in loess sections.

The succession of the above-mentioned interglacials also support the interpretation that during the Litticastic (= Fuhne) Glaciation, separating the Mazovian Interstadial from the Zbójnian Interstadial, the Scandinavian ice sheet did not reach western and eastern Europe (Lindner 1988). Recently collected data from the German – Polish Lowland (see Marks & al. 1991, Marks & al. 1995, Urban & al. 1991, Urban 1995) suggest that during the Odranian (= Drenthian, Dnieperian) Glaciation the Scandinavian ice sheet could have had only a very limited extent. Glacial deposits from the Netherlands to Russia typically considered as belonging to this glaciation may actually represent an older, pre-maximum stadial of the Wartanian Glaciation.

REFERENCES

Kondrafiene, O. 1996. Stratigraphy and paleogeography of the Quaternary period of Lithuania on the basis of paleobotanical data, 1-210. Academia; Vilnius. [In Russian]

Lindner, L. & Bryczynska, E. 1980. Organogenic deposits at Zbójno by Przedbórz, western slopes of the Holy Cross Mts, and their bearing on stratigra-

PLATE 1

Bojanice loess section:
1 – Horokhov paleosol complex
2 – Horokhov (upper) and Korshov (lower) paleosol complex
3 – Horokhov paleosol complex (upper) and Luck paleosol (lower)
4 – Luck (upper) and Sokal (lower) paleosols

Korshov loess section:
5 – Horokhov (upper) and Korshov (lower) paleosol complex
6 – Korshov paleosol complex
Evidence for a shallowing event in the Upper Turonian (Cretaceous) *Mytiloides scupini* Zone of northern Germany

FRANK WIESE & BJÖRN KRÖGER

Institut für Paläontologie, Freie Universität Berlin, Malteser Str. 74-100, D-12249 Berlin, Germany

E-mails: 1 frwiese@berlin.snafu.de; 2 buxcreau@zedat.fu-berlin.de

ABSTRACT:

Based on the evidence of a regression in the Late Turonian (Cretaceous) *scupini* Zone of the Münsterland Cretaceous Basin (Westphalia), the exposures Nettlingen and Groß-Flüthe are investigated in order to discover whether or not a comparable event can be observed in Lower Saxony. The lithological and faunal investigation of the two localities show this to be the case. This regressive event is interpreted to be the expression of a sequence boundary, separating two 3rd order sea-level cycles. The lower sequence, the base of which is located above the main *Hyphantoceras* Event in the middle Late Turonian of northern Germany, is termed the "flexuosum Sequence". The sequence above the sequence boundary, which ranges into the Lower Coniacian *Cremnoceramus deformis* Zone, spans approximately the reported range of *Didymotis costatus*. It is, therefore, named the "Didymotis Sequence". It can be shown that the observed sequence boundary can also be recognized in Spain, southern England, Poland and the Czech Republic.

Dedicated to the 65th birthday of Prof. Dr. E. Herrig

INTRODUCTION

In the Upper Turonian of the Münsterland Cretaceous Basin (Westphalia, northern Germany), the glauconitic greensands of Soest (Soester Grünsand; BÄRTLING 1921, SEIBERTZ 1977, 1979; KAPLAN 1994), in the south, and the greensands of Rothenfelde and Timmeregge as well as the conglomeratic iron-ores of Borgholzhausen, in the north (SCHLOENBACH 1869, ELBERT 1902, BÄRTLING 1921, KAPLAN & BEST 1984), mark a significant change of facies: Pläner-limestones, representing a more distal environment, locally glauconitic, are overlain with a comparatively sharp contact by sediments that represent a shallower environment. The Soest Greensand comprises autochthonous/paraautochthonous sediments of a shallow marine setting north of the Rhenish massiv. The greensands grade progressively up into distal, monotonous marl-limestone alternations (Grau-Weiße-Wechselfolge: Grey and White Alternation, GWA; FRIEG & *al.* 1989) that can be readily correlated between the Münsterland and the Lower Saxony Basin (ERNST & *al.* 1983) and reflect, therefore, a period of high relative sea-level with widespread uniform sedimentation. The allochthonous greensands of Timmeregge and Rothenfelde (debruits/turbidites) were shed as apron-like bodies from a palaeo-
high in the north (VOIGT & HANTZSCHEL 1964), the Nordwestfälisch-Lippische Schwelle von HAACK (1925), located close to the present-day Teutoburger Wald. Their microfacies represent a shallow marine environment that is not preserved due to erosion of the source area (MESTWERDT 1930, VOIGT & HANTZSCHEL 1964).

Of the same age are lenticular accumulations of clay iron-stones (iron-ores of Borgholzhausen) that erosively cut deep into the underlying Pläner limestones and, locally, interfere with greensands time-equivalent to that of Rothenfelde. These clay-ironstones may derive secondarily from conglomeratic Neocomian sandstones that yield clay-ironstone geodes reworked from the Lias, or may even derive directly from the Lias (BÄRTLING 1921). In any case, the lithological composition of these iron deposits indicates deep erosion that cuts at least as far down as into the Lower Cretaceous. These deposits are also overlain by the GWA, indicating a transgressive development.

BÄRTLING (1921) noted already that the greensands reflected a major regression and the interpretation of the greensands as shallow marine in origin (“Seichtwasserbildungen”) can also be found in STILLE (1908) and MESTWERDT (1930). Interpreting the comparatively rapid facies change from the more distal Pläner limestones below and the transgressive greensands above in terms of sedimentology, the contact between these two lithologies can be considered to indicate a sequence boundary between two 3rd order cycles sensu VAN WAGONER & al. (1988).

The first dating of the greensands was done by SCHLOENBACH (1869), who could prove that they fell stratigraphically into the so-called “Scaphiten-Schichten” (Scaphites beds) of the late Late Turonian (for a discussion of the stratigraphic significance of the Scaphiten-Schichten see PRESHER 1963). KAPLAN & BEST (1984), KAPLAN (1994) and KAPLAN & KENNEDY (1996) demonstrated that the greensand occurrences of Soest in the south and of Rothenfelde/Timmeregge in the north fall into the late Late Turonian Mytiloides scupini inoceramid Zone (the former Inoceramus aff. frechi Zone of German workers, e.g. WOOD & al. 1984), or into the lowermost part of the Prionocyclus germari ammonite Zone, respectively. They are, therefore, of the same age.

No evidence for a similar regression has so far been reported in time-equivalent strata in Lower Saxony and Saxony-Anhalt. This interval appears to be characterized here by monotonous Pläner limestones without any significant lithological and sedimentological features. Therefore the question arises, whether this regressive event is restricted to the Münsterland Basin, or whether it can also be identified in other areas of northern Germany or, perhaps, elsewhere in Europe.

AIMS AND METHODS

Since no direct evidence for a late Late Turonian sequence boundary in Lower Saxony and Saxony-Anhalt can be obtained from the literature, the scope of this paper will be to investigate the time-equivalent strata of the Westphalian greensand occurrences (basal Mytiloides scupini Zone, Late Turonian) by means of lithology, sedimentology and faunal development. Unfortunately, strongly glauconitic sediments and/or conglomeratic deposits that might indicate the occurrence of a shallower environment and a corresponding regressive event, are not known in Lower Saxony and Saxony-Anhalt in Late Turonian times. There, most exposures exhibit the typical Upper Turonian Pläner limestone facies, consisting of apparently little diversified marl/limestone alternations of white to greyish limestones with intercalated dark marl seams. Sedimentary features, suggestive of shallower water environments, such as channel-fills or reworking horizons are of only local occurrence. (ERNST & WOOD 1995). To recognise a shallowing in such environments, VOIGT (1959), HANCOCK (1989), ERNST & al. (1996) and GALE (1996) suggested that hardgrounds, nodular limestones and lag-deposits, in particular, could be used to recognize regressive developments in Pläner limestone and chalk environments. Allochthonous deposits as predicted by the sequence stratigraphic model (VAN WAGONER & al. 1988) can also occur. ERNST & al. (1996) presented a list of criteria that are inferred to occur within a sea-level cycle in Boreal and pelagic shelf carbonates. Based on their model (ERNST & al. 1996, p. 90, Fig. 4), the following features are inferred to be indicative of a regressive development:

i) hardgrounds,
ii) nodular limestones,
iii) calcarenites [“Grobkreide”],
iv) increased content of macrofauna [fossil accumulations, bio-events],

(continued...
v) allochthonous deposits,
vi) low keeled/unkeeled planktonic foraminifera ratio,
vii) low ratio of benthic versus planktonic foraminifera,
viii) glauconite.

Microfacies analyses can also aid the recognition of environmental changes in these Pläner limestones as has been shown by Neuweiler & Bollman (1991) and Horna & al. (1994).

Using all these features listed above, an attempt is made to provide analyses of facies and faunal development in the investigated interval. The question of a possible sequence boundary in this interval is additionally discussed.

PREVIOUS WORK ON SEDIMENTARY SEQUENCES IN THE TURONIAN OF NORTHERN GERMANY

In the Upper Turonian of northern Germany, data on sequence stratigraphy are limited. Ernst & Wood (1995) presented a cycle chart for Lower Saxony. Those authors, however, did not report a high Turonian sequence boundary in the investigated interval. In the comparative cycle chart between Spain and northern Germany of Ernst & al. (1996, p. 89, Fig. 3), a sequence boundary in the scupini Zone was recognized but no horizon or locality data were given. Wiese (1997) tried to compare his cycle chart for Turonian and Lower Coniacian strata of northern Spain (Santander area, Cantabria) with data from Westphalia and equated his sequence boundary in the Mytiloides scupini/Prionocyclus germari Assemblage Zone (Mytiloides scupini Zone of northern Germany) with that below the Westphalian Soesl and Rothenfelde greensands. Based on the succession of macrofaunas in the limestone quarry of Hoppenstedt (Saxony-Anhalt), Horna & Wiese (1997) suggested that there may be evidence to support shallowing in the early scupini Zone.

The sequence stratigraphic subdivision, presented in the figures to this text, are based on literature and our own unpublished field data.

GEOLOGICAL FRAMEWORK AND CHOICE OF THE LOCALITIES

The study area lies within the Lower Saxony Basin (Ziegler 1988). The best researched

Fig. 1. Simplified geological sketch-map of the study area in Lower Saxony
sections exhibiting Upper Turonian strata are the sections in the limestone quarries of Salzgitter-Salder and Söhde in the the Lesse Syncline (Text-fig. 1; WOOD & al. 1984, ERNST & WOOD 1995, WOOD & ERNST 1997, KAUFFMAN & al. 1996). Salzgitter-Salder is located within a structurally complex depositional area, being influenced both by the rim syncline of the uprising Broistedt salt structure in the north and the marginal trough of the Lichtenberg High in the south. It is characterized by high accumulation rates. The exposures around Söhde are positioned close to the salt-structure of Broistedt and show, presumably due to a migrating rim syncline, strongly differing rates in subsidence over time: Although the interval around the Hyphantoceras Event (Subprionocyclus neptuni Zone, Text-fig. 2) falls within an hiatus (VOIGT & HILBRECHT 1997), the exposed part of the Mytiloides scupini Zone shows in the Grey and White Alternation accumulation rates comparable to those of Salder (ERNST & WOOD 1995), indicating renewed accelerated subsidence. Due to the comparatively high accumulation rates, these two localities, at first sight, do not exhibit any significant facies changes that might permit the detection of a sequence boundary. Therefore, the sections of Nettlingen (close to the Mölme/Groß Ilsede salt structure) and Groß-Flöthe (Oderwald structure) were selected for this investigation (Text-fig. 1). Their inferred position close to or over positive structures seem to be more appropriate for the recognition of a possible sequence boundary because a relative sea-level change and its resulting impact on the sedimentary record should be easier to recognize in shallower environments. In fact, the investigated localities do actually exhibit shallower environments as indicated, to some extent, by the lower accumulation rates and the presences of distinct faunal assemblages. These points will be discussed in detail below.

The exposures of Nettlingen and Groß-Flöthe are abandoned limestone quarries, and the sections are already covered to a large extent by talus. The work on these sections presented here serves to preserve information on successions that would otherwise be lost.

STRATIGRAPHY

Biostratigraphy

Biostratigraphic subdivision in Lower Saxony and Saxony-Anhalt is based on inoceramids. In this paper, the subdivision of the Upper Turonian into three inoceramid (assemblage) zones of WOOD & al. (1984) is, with slight modifications, adopted (in ascending order: *Inoceramus*...
The base of the Upper Turonian in Westphalia, the base of which equates with that of the inoceramid zone of Prionocyclus germari Zone in Westphalia and applied it to the inoceramid zonation. Within this stratigraphic framework, the investigated interval can be shown to fall, respectively, into the late Late Turonian Mytiloides scupini Zone or into the lowermost part of the Prionocyclus germari Zone (Text-fig. 2). In Westphalia, the base of the latter zone lies just below the greensand occurrences of Rothenfelde and Soest (KAPLAN & KENNEDY 1996). HORNÁ & WIESE (1997) discussed the possibility that the first appearance datum (FAD) of a heteromorph ammonite resembling Neocrioceras sp. could be used to define the base of the germari Zone in Lower Saxony. As shown below (Text-figs 2-3), this is not the case. However, the base of the first peak occurrence of this genus may well approximate the base of the germari Zone and, therefore, aid in recognizing the time-equivalent strata to the Westphalian greensands in Lower Saxony (Text-fig. 2).

It should be mentioned here that KAPLAN (1986) established a Subprionocyclus normalis Zone in Westphalia, the base of which equates with that of the inoceramid zone of Mytiloides scupini. The normalis Zone was abandoned later (KAPLAN & KENNEDY 1994) in favour of a Prionocyclus germari Zone with its base located in the lowest part of the scupini Zone. Finds of Subprionocyclus normalis (ANDERSON) from the lowermost scupini Zone (approximately 50 cm above the Micraster Event, Text-figs 2-3; Pl. 2, Fig. 5) at Groß-Flötze fit the data from Westphalia and provide, therefore, additional stratigraphic information.

Event stratigraphy

In order to delimit the investigated interval more accurately, the event-stratigraphic framework of ERNST & al. (1983) will be applied (Text-fig. 2). Based on this work, the interval starts with a so-called “event-bundle”. This consists of two
marker horizons of different origin, namely the tuff layer T_p and the Micraster Event. The latter is characterized by the first flood occurrence of “modern” Micraster of the praecursor/cortestudinarium lineage and serves as an excellent marker between Saxony-Anhalt, Lower Saxony and Westphalia (BRÄUTIGAM 1962, WOOD & al. 1984, HORNA 1996). T_p can be recognized in Westphalia and Lower Saxony (RAY 1995, WRAY & WOOD 1995, WRAY & al. 1995, WRAY & al. 1996), and marks the base of the scupini Zone. In this context, the base of the interval studied is taken at the Micraster Event and falls, therefore, into the early Late Turonian scupini Zone.

The Heteromorph Beds of HORNA & WIESE (1997) in the lower scupini Zone (Text-fig. 2) may have event-like character. They are characterized by an abundance-peak of a nostoceratid ammonite assemblage, consisting mostly of Neocrioceras sp. aff. paderbornense (SCHLÜTER) (this species will provisionally be referred to exclusively as Neocrioceras sp. in this text and the figures; it is currently under investigation by WIESE, in prep.), Hyphantoceras flexuosum (SCHLÜTER), Scaphites geinitzi (D’ORBIGNY) and Sciponoceras bohemicum (FRITSCH). They are inferred to define a stratigraphic interval around the Westphalian greensand occurrences and can be shown to occur in Lower Saxony and Saxony-Anhalt (HORNA & WIESE 1997). Furthermore, the two specimen of Neocrioceras sp. from the Dresden/Blasewitz borehole (Saxony, Germany), figured and mistakenly identified as Hyphantoceras reussianum (D’ORBIGNY) by TROGER (1968) and TROGER & VOIGT (1995), prove the presence of these beds in Saxony.

The top of the investigated interval is taken at the first abundance peak of Didymotis costatus (FRITSCH), which is referred to provisionally as the Didymotis 0 Event (JÖRDENS-MOLLER 1996, WOOD & ERNST 1997) in this text. This possible marker bed has only recently been discovered and its stratigraphic value is still under investigation. Loose finds of Didymotis costatus at Söhlde and Hoppenstedt (Text-fig. 1) in Saxony-Anhalt (HORNA & WIESE 1997) suggest the event to be also present there.

Lithostratigraphy

Based on event stratigraphic correlation, the strata can be shown to belong to the Upper Turonian “Untere Kalkstein-Einheit” (Lower Limestone Unit) and the lower part of the “Grauweiße Wechselfolge” (Grey and White Alternation) of ERNST & al. (1983). As informally proposed by HORNA & WIESE (1997), the Lower Limestone Unit can be, by means of the Micraster Event, lithologically subdivided into a lower part and an upper part. In this context, the base of the studied strata, therefore, corresponds to the base of the Upper Limestone Unit (Text-fig. 2). In Lower Saxony, the interval above the Micraster Event is, generally speaking, characterized by a succession of thickly bedded white to greyish limestones with intercalated marl beds. It is overlain by the Grey and White Alternation. The GWA as a whole exhibits a thickening upwards development that is terminated by thickly bedded limestones (Upper Limestone Unit, WOOD & al. 1984). The lower part of the GWA, which falls within the studied interval, is characterized by the predominance of marlier sediments. The transition between these two litho-units is a gradual one and the definition of a boundary is necessarily somewhat arbitrary. At Salder, it is taken at the first thick marl bed above an interval with thickly bedded limestones (Bed 14 of WOOD & ERNST 1997; Text-fig. 5 of this paper). Based on lithostratigraphic correlation within the working area, this bed is inferred to correspond to bed 17 at Nettlingen and bed 16 at Groß-Flöthe (Text-figs 3-5).

NETTLINGEN: LITHOLOGY AND FAUNA

Grid reference: GK 25: 3827 Lesse; R: 358030, H: 77990

Locality: Abandoned small limestone quarry near the Nettlingen-Berel road

References: MENZEL (1902), WOLLEMANN (1902a, 1902b, 1905), SCHRAMMEN (1910), WOLSTEDT (1933), BRÄUTIGAM (1962), ERNST & al. (1979), KRÖGER (1996a)

The locality Nettlingen is structurally located at the western border of the Lesse Syncline, close to the salt structures of Mölme/Groß Ilsede (Text-fig. 1). Formerly, there were many quarries around Nettlingen but these are now back-filled. They exposed Cenomanian to Upper Turonian strata, up to the Micraster Event, and were mentioned in WOLLEMANN (1902a, b), MENZEL
(1902) and Schrammen (1910). A detailed investigation was presented by Bräutigam (1962). The studied quarry is the only Nettingen exposure at the moment and it was not studied by Bräutigam (1962).

The exposed section covers an interval from immediately above the Micraster Event (upper Lower Limestone Unit) to the lower GWA (Text-fig. 3, for key see Text-fig. 5). The Micraster Event itself is not exposed. However, finds of several fragments of "modern" Micraster ex gr. praecursor/cortestudinarium in grey-weathering, marly sediments from the bottom of the quarry suggest the event to be only tens of centimetres below the quarry floor. As in Salder and Groß-Flöthe, a Didymotis 0 Event is recognized, delimiting the upper boundary of the investigated interval (Text-fig. 3).

Upper Lower Limestone Unit (approx. 13.0 m exposed)

The upper Lower Limestone Unit above the Micraster Event in the quarry shows a conspicuous two-fold subdivision: The lower part consists of white, more massively bedded limestones and subordinate marl seams. The higher part is characterized by a widely-spaced marl/limestone alternations of greyish limestones and dark marls. The boundary between these two lithologies is marked by an interval rich in limonic and strongly altered sponges (Sponge Bed), giving the sediment a reddish/brownish colouration, immediately followed by a triplet of closely spaced marl beds.

Micraster Event to the Sponge Bed (approx. 3.5-4.0 m)

Lithology: As mentioned above, the Micraster Event is inferred to lie just below the quarry floor. The only locally exposed marls at the base of the quarry are, therefore, the last marl seams of the marl-dominated interval around the Micraster Event. Further up-section, a thickening upwards trend can be recognized. It is terminated by the Sponge Bed. The latter is characterized by the abundant occurrence of pyritized and altered sponges (Pl. 2, Fig. 1), giving this layer a partially red colouration. Compared with the thickly bedded limestones below, the Sponge Bed exhibits a more flasery character. It seems to be the end-member of a thickening upwards cycle, because a facies change towards marlier sediments can be observed immediately above.

Even though the strata appear macroscopically to become coarser towards the top of this cycle, microfacies analyses show the rocks to be almost monotonous and only a small increase of bioclastics towards (bioclastic) calcisphere wackestones (Pl. 1, Fig. 1) at the top of this unit can be observed. The succession consists generally of wackestones containing calcispheres, planktonic foraminifera and, to a minor degree, inocerimid debris. Spicules of hexactinellid sponges also occur, as do scattered grains of glauconite.

Macrofauna: From the base of the quarry, some specimen of Micraster ex gr. praecursor/corte­studinarium were collected. In contrast to the microfacies, the macrofauna shows a readily recognizable, positive correlation with the thickening upwards development: While the basal exposed sediments are still poor in macrofossils, beds 2 and 3 (Text-fig. 3) yielded a rich invertebrate macrofauna. It consists of inocermids: Mytiloides incertus (Jimbo), Inoceramus costellatus Woods, Inoceramus herculis (Heinz); ammonites: Lewesiceras mantelli Wright & Wright, Eubosystrychoerus saxonicum (Schlüter), Scaphites geinitzi, Sciponoceras bohemicum, Neocrioceras sp. (Pl. 2, Fig. 7); echinoids: Echinocorys gravesi (Desor), Sternotaxis sp. (an intermediate form between Sternotaxis plana and Sternotaxis placenta), Hirudocidaris sp. (Pl. 2, Fig. 4); brachiopods: Orbirhynchia sp.; solitary corals and a diverse sponge fauna. Based on field observations by one of the authors (Kröger), the acme of large Inoceramus herculis is of special interest for regional comparison because it can also be observed in the Salder and Söhle sections, as well as in Groß-Flöthe (Text-fig. 4). It is also of importance to note that the occurrence of Mytiloides incertus well above the Micraster Event both at this locality and Groß-Flöthe is the first evidence of the species from this interval in Lower Saxony.

Top of the Sponge Bed to the base of the Grey and White Alternation (approx. 9.0 m)

Lithology: Above the Sponge Bed, a significant change in lithofacies can be observed. Even
though thickly bedded limestone bundles prevail, the colour changes from white to grey. Furthermore, marl seams begin to intercalate successively, foreshadowing the GWA. The uppermost part of the Lower Limestone Unit exhibits in this interval a considerable change from weakly bioclastic wackestones towards calcisphere wackestones (up to 25% calcispheres; Text-fig. 3).

Macrofauna: Above the Sponge Bed, the amount of macrofauna decreases considerably. However, ammonites [Neocrioceras sp., Scaphites geinitzi, Sciponoceras bohemicum, Yezoites bladenensis (SCHLÜTER)], Hirudocidaris sp. and Sternotaxis sp. are still common. A sudden decrease of the macrofauna around beds 5 to 7 marks the upper limit of the Heteromorph Beds.

Grey and White Alternation

Lithology: The base of the GWA is taken here at bed 17. It represents an alternation of greyish limestones and dark marl beds. It develops gradually out of the Lower Limestone Unit and marks the further shift towards marlier sediments. The microfacies varies from (calcisphere) wackestones to bioclastic wackestones, containing common planktonic foraminifera (hedbergellids, heterohelicids, globotruncanids), inoceramid and echinoid debris and spicules of hexactinellid sponges. Towards the top of the section, above the Didymotis 0 Event, the first mudstones occur.

Macrofauna: With the GWA, a further decrease in abundance and diversity can be observed. The fauna is dominated by irregular echinoids (Sternotaxis sp., Micraster ex gr. praecursoricurstonotarius, Influster sp.) and inoceramids, including Inoceramus costellatus and Mytiloides scupini. The Didymotis 0 Event in bed 22 marks the FAD of Didymotis costatus in this section. This interval also yielded very large specimen of Sternotaxis cf. placenta (AGASSIZ), Sciponoceras bohemicum occurs scattered throughout the entire section.

Additional fauna

In the papers of WOLLEMANN (1902a, b), MENZEL (1902) and SCHRAMMEN (1910), additional lists with Upper Turonian fossils from Nettlingen were presented, including Hyphantoceras flexuosum (SCHLÜTER). As this species enters well above the Hyphantoceras event (KAPLAN 1986), it can be, also based on the associated fauna, assumed that these authors collected in the same stratigraphic interval as described above. Within this context, it is important to note that SCHRAMMEN (1910) collected a diverse sponge fauna from this interval at Nettlingen, now housed and registered at the British Museum of Natural History, London. These specimen are all three-dimensionally preserved and limonitized, as are the specimen from the Sponge Bed. Based on this information, it is highly possible that SCHRAMMEN’S Nettlingen material, in fact, derived from the Sponge Bed described here.

Conulus subrotundus (MANTELL), very large Gibbythyris subrotunda (SOWERBY) and Puzosia sp. are also listed.

GROß-FLOTHE: LITHOLOGY AND FAUNA

Grid reference: GK 3928 Salzgitter, R: 3601100, H: 5773250
Locality: Abandoned limestone quarry beside the motorway BAB 395 (Braunschweig-Bad Harzburg).

References: WOLLEMANN (1901), SCHRÖDER (1912), CARLE (1938), ERNST & al. (1979), JORDENS-MOLLER (1996)

The two abandoned quarries at Groß-Flöthe are located on the western side of the N-S-trending Oderwald structure (Text-fig. 1). They exhibit an almost complete composite section from the Upper Turonian Hyphantoceras Event (Subprionocyclus neptuni Zone) to the Lower Coniacian with a minor gap in exposure of few metres in the upper Hyphantoceras Event. The beds dip gently at 20° to 25° to the WNW (260°).

In the north-eastern quarry, an interval from the marl layer M₇ (Text-fig. 2) up to the upper part of the Hyphantoceras Event ist still exposed and readily accessible. In the southern quarry, an interval from the top of the Hyphantoceras Event to the basal Coniacian is exposed, the latter being indicated by the abundance of a typical Lower Coniacian fauna (e.g. Cremnoceramus waltersdorfensis, Cremnoceramus erectus, Cremnoceramus deformis, Neocrioceras paderbornense).
The lowermost strata of the southern quarry are characterized by the common occurrence of *Lewesiceras mantelli* (Pl. 2, Fig. 6). *Hyphantoce­ras flexuosum* (SCHULTER) (Pl. 2, Fig. 8) and *Neocrioceras* sp. were also found. This fauna be­longs presumably to the top of the *Hyphantoce­ras* Event (desmoceratid ammonite association sensu KAPLAN 1991). Several specimen of *Myti­loides incertus* were collected, indicating the presence of the *Mytiloides incertus* Event (KAPLAN 1991, ERNST & WOOD 1995; Text-fig. 2 of this paper). Two distinct marl seams, the higher of which contains "modern" *Micraster*, are interpreted as tuff T and the *Micraster* Event, respectively (Text-fig. 4). The presence of these index-markers permits good dating and a reliable correlation of the section with other localities. A short distance above the *Micraster* Event, an interval rich in *Neocrioceras* sp. occurs in the upper Lower Limestone Unit. Within this interval, there is a well developed hardground with conglomerates and debrites. The upper Lower Limestone Unit is overlain by the Grey-White Alternation.

Above the *Micraster* Event, a distinct sequence of lithologies can be distinguished and described. These are (in ascending order): i) the *Micraster* Event, ii) thickly bedded limestones of the Lower Limestone Unit terminating in a hardground, iii) a conglomerate/debrite complex, iv) thickly bedded limestones of the Lower Limestone Unit and v) the Grey-White Alternation. As the section is already partly covered by talus, bed-by-bed logging is not possible in the lower parts. A detailed bed-by-bed sampling and fossil collecting as in the case of Nettlingen was not feasible, and a continuous fossil documentation was, therefore, not always possible.

Micraster Event

Lithology: As in all other sections of Lower Saxony, the *Micraster* Event represents a short interval that is characterized by the predominance of marly sediments (BRAUTIGAM 1962, WOOD & al. 1984). In those sections where detailed microfacies studies have been carried out, the interval around the *Micraster* Event is characterized by a significant decrease in calcisphere and planktonic foraminifera. Keeled forms of the planktonic foraminifer component
can reach up to 90% (KRÖGER 1996b, ERNST & WOOD 1997, WOOD & ERNST 1997). This can also be observed at Groß-Flöthe. The thin limestone beds within this interval are wackestones, in part on the boundary to mudstones. Coarse bioclastics are scarce. Only foraminifera and calcispheres occur in significant amounts.

Macrofauna: The Micraster Event is characterized by the first abundance peak of modern Micraster of the praecursor/cortestudinarium lineage. Sternotaxis sp. and Micraster leskei (DESMOULINS) occur as subordinate elements. The beds are otherwise poor in macrofossils with the exception of inoceramids. The taxonomic position of the inoceramids, as at Nettlingen, is unclear but they seem to characterize the stratigraphic interval well above tufflayer Tₚ (C. J. WOOD, pers. comm.), and can be compared with the fauna at Nettlingen.

Upper part of the Lower Limestone Unit (approx. 17.0 m exposed)

As mentioned above, a major hardground with conglomerates and debrites is intercalated into this interval, separating these beds into three individual parts. Therefore, the individual lithologies (Text-fig. 4) will be separately described.

Micraster Event to the hardground (approx. 4.0 m)

Lithology: As at Nettlingen, a thickening upwards development can be recognized from the Micraster Event on. Even though the sediment appears to become coarser and the faunal content increases up-section, the microfacies shows only the slightest variation. The sediment consists of bioclastic wackestones (Pl. 1, Fig. 2) with fragments of calcispheres, planktonic foraminifera (hedbergellids, heterohelicids and globotruncanids). Debris of inoceramids or echinoids, as well as benthic foraminifera such as Lenticulina sp. are of subordinate importance. Spicules of hexactinellid sponges are common. In comparison to time-equivalent strata at Nettlingen (Pl. 1, Fig. 1), the strata yield significantly less calcispheres here.

This facies is abruptly terminated by a hardground (Text-fig. 4; Pl. 1, Fig. 4). Its surface is slightly iron-stained and strongly bioturbated by Thalassinoides. Bioturbation can pipe sediment down up to 30 cm. The three-dimensional preservation of the burrows and the sharp contact of burrow-walls with the infilled sediments indicate early diagenetic lithification. This is also proved by Trypanites-like borings (Pl. 1, Fig. 3) and fragmented areas of the hardgrounds, where sharp, angular hardground clasts are preserved in formerly open cavities.

Macrofauna: Above the Micraster Event, the macrofauna progressively increases up-section. Sternotaxis sp. and fragments of Micraster leskei are common. Eubostrychoceras saxonicum, Hyphantoceras flexuosum, Scaphites geinitzi, Sciponoceras bohemicum and Subpri­nocycclus normalis (Pl. 2, Fig. 5) also occur. The latter species is known to have its FAD well above the Hyphantoceras Event in Westphalia (KAPLAN 1986). This fits the situation as observed at Groß-Flöthe. A first peak-occurrence of Neocrioceras sp. about 10 to 50 cm below the hardground indicates the presence of the Heteromorph Beds at this locality. The inoceramid fauna yielded forms that resemble Inoceramus costellatus longealatus TRÖGER, Mytiloides scu­pini and Mytiloides incertus. Fragments of very large inoceramids (Inoceramus hercules, Pl. 2, Fig. 9) are common in this interval. It is noteworthy that at Nettlingen an accumulation of these large inoceramids can also be observed in the same stratigraphic position. The interval below the hardground is particularly characterized by Cystispongia bursa QUENSTEDT (Pl. 2, Fig. 2). Its occurrence may be of certain interest, because this species seems to be comparatively common both in England (e.g. HINDE 1883, WOOD 1992) and in Germany (e.g. QUENSTEDT 1877, SCHÖRDER & DAHLGRÖN 1927) in Upper Turonian strata. Where it occurs, it is linked to condensed sedimentation in shallow environments and it may, therefore, be indicative for regressive developments. The hardground surface is poor in macrofauna.

It appears that the increase of the total amount of macrofauna correlates positively with the thickening up trend.

Conglomerate/debris complex (0.10-0.45 m)

Lithology: A well developed conglomerate bed overlies the hardground with a sharp basal
contact. It exhibits a red colouration and is, therefore, easy to recognize. The pebbles are mostly well rounded and reach a diameter up to 6-10 cm. Pebbles with a more angular shape also occur. They consist of different facies types, from mud/wackestones to slightly bioclastic wackestones with fragments of inoceramids, echinoids, planktonic foraminifera and calcispheres. Differences between these lithologies are only small. The composition of the matrix, however, reflects a major facies change towards a shallower environment: It consists of a bioclastic packstone that is rich in inoceramid- and echinoderm-debris (spines of Hirudocidaris sp., asteroid ossicles, echinoids), calcispheres, non-keeled planktonic foraminifera (hodbergellids, heterohelicids). Ostracods, bryozoans, serpulids, ostreid bivalves, spicules and Lenticulina sp. are common (PI. 1, Fig. 6). The conglomerate shows lateral variation in thickness (5-30 cm), possibly reflecting an undulating erosion surface on top of the hardground that can be regarded as a primary relief. The conglomerate is overlain by a partly laminated, echinoderm wacke- to packstone of varying thickness (5 to 15 cm; PI. 1, Fig. 7). Filling up the residual relief, it terminates this allochthonous interval, and is itself covered by “normal” autochthonous limestones that show no change in thickness within the quarry.

Macrofauna: The conglomerate is very rich in macrofossils. Inoceramids debris, large Echinocorys gravesi, Concinnithyris sp., Orbirhynchia sp., Spondylus sp. and spines of Hirudocidaris sp. are particularly common. Associated fragments of asteroids are scarce; however, the local superabundance of isolated asteroid ossicles confirm that asteroids (Metopaster sp.; Pl. 2, Fig. 3) were an important element of the fauna. Serpulids, hexactinellid sponges and solitary corals also occur.

Uppermost Lower Limestone Unit (approx. 9.5 m)

Lithology: Immediately above the hardground, the microfacies grades back into bioclastic wackestones with decreasing amount of coarse bioclastics (Pl. 1, Fig. 8). There is an increasing intercalation of marl beds, and the limestones turn from white to a slightly greyish colour.

Macrofauna: The beds immediately above the hardgrounds are rich in ammonites (Neocricoceras sp., Yezoites bladenensis, Sciponoceras bohemicum, Scaphites geinitzi, Eubostrychoceeras saxonicum). Inoceramids, including large Mytiloides incertus, also occur. After only tens of centimetres, the macrofossil content decreases. Only Sternotaxis sp. and small inoceramids are common.

Grey and White Alternation

Lithology: The base of the GWA is taken at the base of bed 16, which is a marl seam (Text-fig. 4). As already described from Nettlingen, the base of the GWA marks an increase of marl beds and a decrease of macrofauna. The limestone beds are of a light grey colour and are penetrated by dark-coloured Zoophycos and Chondrites. Lithologically, the limestones can be best described as wackestones with varying amount of bioclastics (echinoids, inoceramids, planktonic foraminifera). In addition, the calcisphere content increases significantly (approx. 25 %), as already observed at Nettlingen at the same level.

Macrofauna: The Turonian part of the GWA is generally poorer in macrofauna as the strata below. However, echinoids (Sternotaxis cf. placenta, Echinocorys gravesi, Infalaster sp., Micraster ex gr. praecursor/cortestudinarium) as well as scaphitids, Sciponoceras bohemicum and small mytiloid inoceramids of uncertain taxonomic position occur scattered throughout the section.

DISCUSSION

Lithology and microfacies

The Micraster Event was interpreted as a maximum flooding zone by Kröger (1996a). At Salder and Söhle, it is particularly characterized by thinly bedded limestones with a very high content of keeled planktonic foraminifera (up to 90%). Above the Micraster Event, a short-term thickening upwards development in the upper part of the Lower Limestone Unit can be recognized both at Nettlingen and Groß-Flöthe. It is characterized by a successive decrease of marl beds and an increase in bed thickness of the limestones. Furthermore, the amount of macrofossils
Tentative correlation of the uppermost flexuosum Sequence and the lower Didymotis Sequence between Nettlingen, Sohlde, Salzgitter-Salder and Groß-Flothe. The inferred level of the Didymotis 0 Event is taken as a datum.

Note: At Sohlde, the flexuosum Sequence is reduced to a thickness of only few metres due to a major hiatus, associated with the sequence boundary at the base (see Voigt & Hilbrecht 1997). Due to the inferred hiatus at the base of the Didymotis Sequence, a bed-by-bed correlation is not possible in that interval. The Heteromorph Beds can be recognized in any of the localities and serve as a good marker.
increases considerably. This is also reflected by the microfacies, which exhibits change from wackestones towards slightly bioclastic wackestones. At Nettlingen, this trend is terminated by the flasery Sponge Bed (bioclastic calcisphere wackestone, Pl. 1, Fig. 1). At Groß-Flöhthe, a hardground is developed at the same level, terminating a succession of wackestones (Pl. 1, Fig. 2). Based on the data from Ernst & al. (1996), these features can be interpreted as marking a regressive event. Correlation and a comparison of lithological/sedimentological features between Groß-Flöhthe, Salder, Söhilde and Nettlingen (Text-fig. 5) suggest that Groß-Flöhthe represents the shallowest section with the hardground incorporating a small hiatus. This gives further evidence for a relative sea-level fall. It is important to note that the comparatively more distal section at Nettlingen yielded more calcispheres in time-equivalent strata than at Groß-Flöhthe. At Salder, the corresponding strata of this thickening upwards cycle are characterized by thickly-bedded calcisphere-wackestones with a calcisphere content of approximately 25% (Ernst & Wood 1995).

Interpreting the microfacies data presented by Kroger (1996a, 1996b), Jordens-Müller (1996) and in this paper, a facies zonation from proximal [hardground, (bioclastic) wackestone] to distal (foraminiferal wackestones, e.g. the interval around the Micraster Event) can be inferred. The calcisphere-maximum (calcisphere wackestones) possibly reflects a medial position close to swell margins between the proximal (bioclastic) wackestones and the distal foraminiferal wackestones. A comparable observation was also reported by Neuweiler & Bollmann (1991) from the Turonian of Westphalia. This indicates that the maximum occurrence of calcispheres is restricted to a distinct calcisphere facies belt. The comparatively higher accumulation rates within this calcisphere belt are reflected by a generally higher bed thickness. Within a sea-level change, the stacking pattern of the strata, e.g. a thickening upwards development, can, therefore, indicate either a shallowing development (facies change from distal foraminiferal wackestones to medial calcisphere wackestones) or a deepening development [facies change from proximal (bioclastic) wackestones to medial calcisphere wackestones].

Following Walther's law of facies, an increase of calcispheres should, therefore, be expected during transgression in a position more proximal to the calcisphere belt, when it shifts up-swell. In fact, this can be observed at Nettlingen and Groß-Flöhthe. Above the Sponge Bed (Nettlingen) and the hardground (Groß-Flöhthe), respectively, a significant increase of calcispheres can be recognized, accompanied by an increase of bed thickness of the limestones (Text-figs 3-5). Higher up-section the thicknesses of individual limestone beds decrease and those of marl seams increase. This may be regarded as representing a transgressive development. The lithostratigraphic boundary between the Lower Limestone Unit and the GWA, therefore, is purely arbitrary, representing only a moment within an overall transgressive trend.

Macrofauna

Above the Micraster Event, the fauna is increasingly dominated, amongst others, by Echinocorys gravesi, Sternotaxis sp., brachiopods and, to some extent, by Micraster leskei in both Nettlingen and Söhilde. These faunal elements are part of what Ernst & al. (1979) called the Conulus Facies. This term is derived from the old-fashioned "Galeriten-Pläner" (e.g. von Strombeck 1857), Galeritenschichten (e.g. Löscher 1910) or "Galeriten-Fazies" (e.g. Bartling 1913) of Westphalia, interpreting the holocystoid echinoid genus Conulus as Galerites, and was used to describe a significant occurrence of Conulus subrotundus (Manvell). The Conulus Facies is indicative of shallower environments (Löscher 1912) and it is, where it occurs within otherwise normally developed Pläner limestones, interpreted as a regressive event (Ernst & al. 1979). In other localities where the Conulus Facies is developed (e.g. Wülfen in Westphalia, Ernst 1967; Vienenburg in Lower Saxony, Ernst & Wood 1995; Steinberg in Lower Saxony, Ernst & Schmid 1984), Echinocorys is an invariable element of the facies. In the strongly condensed Wülfen section, Conulus occurs abundantly, Echinocorys is common, while Micraster is rare (Ernst 1967). In the Vienenburg section, where the GWA is condensed but without hardgrounds, Echinocorys, Conulus and Sternotaxis occur in approximately equal numbers, and Micraster is rare (Ernst & al. 1997). Ernst & Wood (1995) showed that, beside the eponymous Conulus an
assemblage of *Echinocorys gravesi*, *Sternotaxis* sp., *Or bipolaria* and other brachiopods characterize this facies. Additionally, the hexactinellid sponge *Cystispongia bursa* is common in regressive phases, as observed in other localities in Lower Saxony. With or without *Conulus*, the association of *Echinocorys*, *Sternotaxis*, *Cystispongia* and brachiopods and the absence of *Micraster* ex. gr. *praecursor/cortestudinarium* fits the observations from other localities. In this paper, we apply the term "incipient *Conulus Facies*" to the latter faunal assemblage associated with lithologies suggestive of shallower environments and/or reduced accumulation rates.

At Salder, no evidence for a *Conulus Facies* can be recognized at the investigated level, suggesting continuous sedimentation. However, brachiopods (*Naidinothyris* sp., *Gibbithyris* sp.), and inoceramids (C.J. Wood, pers. comm.), including fragments of large specimen of *Inoceramus hercules*, occur commonly in an interval approximately 4 m above the *Micraster Event*. At Solde, the presence of *Conulus* ‘nests’ (locally developed, weak *Conulus* Facies) and sedimentary anomalies (Ern& Wood 1995), approx. 50 cm above the *Micraster Event*, indicates condensation and a possible hiatus and may be the expression of the regressive event observed in the investigated localities.

With the renewed transgression in the uppermost part of the Lower Limestone Unit, the incipient *Conulus Facies* disappears, and the faunal content decreases significantly. The echinoid association changes towards an assemblage that is dominated by *Sternotaxis* cf. *placenta*, *Infusaster* sp. and *Micraster* ex. gr. *praecursor/cortestudinarium*, indicating the more distal settings suggested by the lithological development.

Further faunal support for relative bathymetric reconstructions may be provided by the ammonite fauna. In Westphalia, Kaplan (1991) demonstrated a threefold subdivision of the *Hyphantoceras* Event into three distinct, successive ammonite associations. The basal association fauna is characterized by a collignoniceratid/allocrioceratid association. It is followed by a nostoceratid and a desmoceratid association. The latter fauna reflects already advanced transgression, and its presence in the working area can be demonstrated in the northern part of the GroB-Flothe quarry. There, the desmoceratid association is characterized by the common occurrence of *Lewesiceras mantelli* together with *Hyphantoceras flexuosum* and *Neocrioceras* sp. The interval around the *Micraster Event* marks peak transgression (Kroger 1996a), and it is accompanied by a low-diversity fauna of sporadic *Sciponoceras bohemicum* and *Scaphites* sp. As these genera are ubiquitous in the Upper Turonian of northern Germany, it is the absence of any other significant ammonites, rather than the presence of these genera, that indicates a period of relative high sea-level.

Within the thickening-upwards development towards the incipient *Conulus Facies* in the upper Lower Limestone Unit, the macrofaunal content increases. Concomitantly with the observed regressive development, the ammonite fauna shifts back into a nostoceratid association, consisting of *Hyphantoceras flexuosum*, *Neocrioceras* sp. and *Eubostrychoceras saxonicum*. A similar fauna in the same stratigraphic position was described by Horna & Wiese (1997) from Hoppenstedt (Saxony-Anhalt) and by Kaplan (1991) from the Anneliese quarry at Bad Laer (Westphalia). The FAD of the collignoniceratid ammonite *Prionocyclus germari* is located in this interval at the latter locality. It should also be noted that at GroB-Flothe (interpreted here, based on lithology and fauna, as the shallowest section of this interval in the working area) several fragments of *Subprionocyclus normalis* were collected (Pl. 2, Fig. 5). This fits the distribution of collignoniceratid ammonites in general (TANABE et al. 1978, Tanabe 1979, Westermann 1996) and is specifically reported from the Turonian of the Münsterland Cretaceous Basin, where *Subprionocyclus normalis* and *Subprionocyclus branneri* (Anderson) occur preferentially in proximal settings (Kaplan 1988). Furthermore, no other section in Lower Saxony has so far yielded collignoniceratid ammonites in this interval with the exception of a single, loose fragment from the *scupini* Zone of Hoppenstedt in Saxony-Anhalt (Horna & Wiese 1997). Therefore, it may well be possible that the finds from GroB-Flothe can be interpreted as indicating a shallow environment, which agrees well with the data presented above.

On the other hand, the sudden collapse of the nostoceratid ammonite assemblage and the occurrences of *Sciponoceras* sp. and *Scaphites* sp. in the uppermost Lower Limestone Unit and the GWA may indicate renewed transgression, with an ammonite assemblage similar to
that around the *Micraster* Event. This interpretation is supported by the development of lithology and the other macrofauna.

Sequential interpretation

Bringing the lithological and macrofaunal data together, a statement on the change of the relative sea-level appears possible (Text-fig. 5). The short interval from the *Micraster* Event to the top of the thickening up cycle may well be interpreted as a late highstand systems tract (HST) *sensu* Van Wagoner & al. (1988). As only a progradational development can be observed, no early, aggradational highstand is documented. The *Micraster* Event is inferred to reflect the maximum flooding zone as already proposed by Kroger (1996a). Based on data from Horna & Wiese (1997) and Voigt & Hilbrecht (1997), who show a major hiatus below the *Micraster* Event, and our own field data, it is suggested that the HST above the *Micraster* Event belongs to a sequence that is interpreted here to start within the *Hyphantoceras* Event, above the main *Hyphantoceras* occurrence. In order to avoid confusion by numbering individual sequences (as done e.g. by Horna & Wiese 1997), this sequence is named here the "flexuosum Sequence", after the ammonite *Hyphantoceras flexuosum* that is characteristic of this interval. The *flexuosum* Sequence is terminated in the proximal section of Groß-Flothe by a hardground that is taken as a third order cycle sequence boundary. Lithostratigraphic correlation with adjacent areas suggest an hiatus which is lithologically confirmed by the occurrence of reworking above the sequence boundary. Down-swell, the time-equivalent strata of the hiatus are characterized by an (incipient) *Conulus* Facies (Nettlingen, Söhnde) or even by an apparently continuous succession with a significant increase in faunal diversity that can be observed 4 m above the *Micraster* event at Salder. The latter interval at Salder, around the marl bed 9c of Wood & Ernst (1997), however, is characterized by laminated and slightly convoluted bedding, suggesting minor sedifluction structures. This points to the possibility of a small hiatus, and might be interpreted as the expression of the sequence boundary in the distal setting of Salder. Within this context, it is interesting to note that, based on a comparison of the stable carbon isotope curve from Salder with that from northern Spain (Wiese, in press), the interval above marl bed 9c is inferred to be characterized by an expanded hiatus because part of the Spanish isotope curve is missing from the Salder. Based on this information, a detailed correlation of the lowermost part of the *Didymotis* Sequence is not possible.

The uppermost part of the Lower Limestone Unit exhibits a slow thinning upwards development, with an increase of marl beds, that grades continuously into the GWA. Both lithological and faunal parameters suggest a progressive deepening. This interval is, therefore, regarded as representing a TST of a third order cycle. Based on the literature, it appears that this sequence may extend up into the Lower Coniacian Upper Limestone Unit of Ernst & al. (1983). The latter shows a progradational stacking pattern and may, therefore, be regarded as a HST. As the sequence largely corresponds to the reported range of *Didymotis*, we suggest the name "Didymotis Sequence" for this sequence.

Interbasinal correlation

The data presented in this paper show a third order sequence boundary (SB) to occur within the Late Turonian *Mytiloides scupini* Zone of Lower Saxony. Taking the faunal data into consideration, it appears that this SB is located in the lowermost *Prionocyclus germari* Zone. These data suggest this regressive event to be the same as the one that generated the facies change towards the shallow water greensand facies in the lowermost *germari* Zone of the Münsterland Cretaceous Basin. It must be concluded that this SB, therefore, is not a local phenomenon but can be recognized at least in Westphalia, Lower Saxony and Saxony-Anhalt. Cycle charts from other regions (Saxony: Kroger & Voigt 1995; England: Gale 1996; northern Spain: Grafe 1994; Tunisia: Robaszynski & al. 1990) or at the "global" cycle chart of Haq & al. (1988), do not recognize a SB in this stratigraphic position.

In the North Cantabrian Basin (northern Spain), however, Wiese & Wilmsen (in press) report a SB in the lower part of their late Turonian *Mytiloides scupini*/*Prionocyclus germari* Assemblage Zone that equates with the *scupini* Zone as recognized in northern Germany.
Therefore, this SB is inferred to correlate with that observed in the working area.

In the Upohlavy section in the Bohemian Cretaceous Basin (Czech Republic), a sequence boundary can be recognized in the Late Turonian, indicated by channels that incise deeply into the underlying strata (Čech & al. 1996). Based on the stratigraphic data, this SB lies within the Teplice Formation, which falls within a *Mytiloides striatoconcentricus* Zone. In Bohemia, this zone spans roughly the interval from the equivalent of the German *Hyphantoce- ras* event to the base of the Lower Coniacian. As this SB still lies well below the *Didymotis I* Event in the litho unit Xb (Čech 1989), it is highly possible that it can be correlated with the *scupini* Zone SB discussed in this paper. Biostratigraphic data from boreholes and exposures elsewhere in the Bohemian Cretaceous Basin are also relevant to the discussion. Čech (1989) could demonstrate that the top of litho-unit Xb ranged almost to the base of the *germari* Zone, which likewise marks the base of the succeeding litho-unit Xc. The channel fill is interpreted as belonging still to litho-unit Xb by Čech & al. (1996), without giving any biostratigraphic or lithostratigraphic reasons. It therefore may be worth discussing, whether the channel cuts down from the unit Xc into the underlying strata of Xb. If this were the case, the SB recognized in the Upohlavy section would also fall into the basal *germari* Zone and would, therefore, equate exactly with the position of the SB recognized in Westphalia and Lower Saxony.

In southern England (Lewes), the *Micraster* Event cannot be recognized. A thick marl with abundant large *Micraster leskei*, the Lewes Marl, however, may be a correlative event of either the tuff *T* or the marl bed *M* (Text-fig. 2, see Wray & al. 1996). Based on a bio- and event stratigraphic correlation between northern Spain, northern Germany and southern England, Wiese (1997) discussed whether the Lewes Marl may equate the tuff *T* [investigations on the origin (detrital versus volcanic) of Turonian marl beds are currently being carried out by D. Wray; University of Greenwich]. In any case, the FAD of the "modern" *Micraster ex gr. praecursor/cortestudinarium* immediately above the Lewes Marl indicates that this interval equates with the base of the strata investigated in this paper. Above the Lewes Marl, a progressive development towards nodular chalks (Lewes Nodular Chalk), locally flinty chalk (Upper Lewes Flints) and cemented surfaces (Lewes Hardground) can be observed (Mortimore 1986, Mortimore 1987, Mortimore 1997). Based on Hancock (1989) and Ernst & al. (1996), this is inferred to indicate a shallowing development. Above the Lewes Nodular Chalk, the facies changes rapidly towards a soft white chalk (Cuilfail Bänderkreide/Zoophycos beds). It correlates positively with a turnover in the ichnofacies from a *Thalas­sinoideas*Spongeliomorpha association in the Lewes Nodular Chalk towards a *Zoophy­cos/Chondrites* association in the Cuilfail Bänderkreide. Following ichnofacies models of e.g. Ekdale & Bromley (1984), Frey & Pemberton (1984) and Savrda & al. (1991), this turnover can be interpreted as indicating a deepening and, therefore, as a transgressive development (Mortimore & Pomerol 1991). Based on these data, it can be shown that a regressive/transgressive event can be observed in southern England in a stratigraphic position that demands a correlation with that observed in northern Germany.

In the Upper Turonian *Mytiloides incertus* Zone [which spans the interval from the north German *Mytiloides incertus* Event (Text-fig. 2) to the Turonian/Coniacian boundary interval, Walaszczyk 1992] of the Folwark quarry (Opole Trough, Poland), passively back-filled, synsedimentary depressions were observed during field work of the working group G. Ernst (Berlin). These are located well above the top of the *Hyphantoce- ras* Event and significantly below the Turonian/Coniacian boundary. Stratigraphically, these features equate the position of the SB terminating the *flexuosum* sequence.

CONCLUSION

The investigation of the abandoned limestone quarries of Nettlingen and Groß-Flöthe shows that, based on fauna and lithology, the lower part of the upper Lower Limestone Unit (*Mytiloides scupini* Zone, Upper Turonian) above the *Micra­ster* Event exhibits a progradational and, therefore, a shallowing development. These strata are interpreted as a HST. The *Micraster* Event marks the maximum flooding Zone. Based on the data obtained from literature, it is assumed that the strata treated here are part of a third order cycle that starts above the *Hyphantoce- ras* Event. For
this sequence the name *flexuosum* Sequence is proposed.

The succeeding sequence boundary is located in the lower part of the *Prionocyclus germari* Zone. In Groß-Flöthe, it is characterized by a hardground and reworking. Based on lithostratigraphic correlation within a bio/event stratigraphic framework it can be shown that the Groß-Flöthe section is the shallowest known section exhibiting this stratigraphic interval in Lower Saxony. In Nettlingen and Söhilde, the interval around the SB is characterized by an (incipient) *Conulus* Facies. This development can be tentatively recognized at Salder by an abundance and diversity peak of the macrofauna.

The following succession (uppermost Lower Limestone Unit and Grey and White Alternation) exhibits a retrogradational development. It is, therefore, interpreted as a TST. For this sequence, which presumably terminates in the Upper Limestone Unit, the name *Didymotis* Sequence is proposed.

Interbasinal correlation shows that the SB recognized here equates with that below the Westphalian greensand occurrence. Further evidence for a sequence boundary in the high Turonian can be recognized in Spain, southern England, Poland and the Czech Republic. It therefore seems that this event can be recognized over a wide area and that it may be of importance, at least in Europe, for a reconstruction of a relative sea-level curve.

Acknowledgements

The authors are indebted to C.J. Wood (Croydon) for valuable discussion and for correcting the English. G. Ernst (Berlin) and U. Rehfeld (Berlin) kindly provided material that was collected during a field trip to Groß-Flöthe in 1997. T. Jordens-Müller (Berlin) and A. Czaja (Berlin) contributed material and information from their diploma-theses. M. Wilmsen (Berlin) gave helpful comments during the final phase of this paper. Wieße is especially indebted to Dr. S. Voigt, TU BA Freiberg, for long and fruitful discussions.

REFERENCES

— 1912. Die westfälischen Galeritschichten als Seichewasserbildung. *ZEITSCHRIFT DER DEUTSCHEN GEOLOGISCHEN GESellschaft, MONATSBERICHTE, 64, 341-344. BERLIN.

MENZEL, H. 1902. Über das Alter des Turons von Nettlingen bei Hildesheim. *CENTRALBLATT FÜR MINERALOGIE, GEOLOGIE UND PALÄONTOLOGIE, [1902], 305-309. STUTTGART.

MESTERWERT, A. 1930. Erläuterungen zur geologischen Karte von Preußen und benachbarten deutschen Staaten, Nr. 2080 Blatt Borgholzhausen, pp. 1-84. BERLIN.

PRESCHER, H. 1963. Zur Problematik der Scaphitenschichten. *BERICHTE DER GEOLOGISCHEN GESSELLSCHAFT IN DER DEUTSCHEN DEMOKRATISCHEN REPUBLIK, 8 (2), 171-188. BERLIN.

QUENSTEDT, F.A. 1877. Pettrefaktenkunde Deutslands, Band V, pp. 1-612. LEIPZIG.

— 1979. Stratigraphisch-fazielle Entwicklung des Turon im südöstlichen Münsterland (Oberkreide, NW-Deutschland). *NEWSLETTERS IN STRATIGRAPHY, 8 (1), 3-60. STUTTGART.

STILLE, H. 1908. Über die Verteilung der Faizes in den Scaphitenschichten der südöstlichen westfälischen Kreidemulde nebst Bemerkungen zu ihrer Fauna. *JAHRBUCH DER PREUßISCHEN GEOLOGISCHEN LANDESTANSTALT, 26, 140-172. BERLIN.

TROGER, K.A. & VOIGT, T. 1995. EVENT- UND SEQUENZSTRATIGRAPHIE IN DER SÜCHSISCHEN KREIDE. *BERLINER...

WIESE, F. in press. Stable isotope data (13C, 18O) from the Middle and Upper Turonian (Cretaceous) of Liencres (Cantabria, northern Spain) with a comparison to northern Germany (Söehle & Salzgitter-Salder). Newsletter on Stratigraphy. Stuttgart.

PLATES 1 – 2
PLATE 1

1 – Weakly bioclastic (calcisphere) wackestone (bed 1 at Nettlingen, HST of the *Hyphantoceras* Sequence) with calcispheres, spicules and debris of heterohelicid and hedbergellid planktonic foraminifera. Based upon the above presented facies interpretation, the comparatively high calcisphere content suggests a more distal setting close to or within the calcisphere belt (width of picture: 2.1 cm)

2 – Weakly bioclastic wackestone (bed 5 at Groß-Flothe) with fragments of heterohelicid and hedbergellid planktonic foraminifera, lateral equivalent of bed 1 at Nettlingen (Pl. 1, Fig. 1). In context with the above presented facies model, this microfacies is inferred to reflect more proximal environments as the calcisphere wackestones (HST of the *Hyphantoceras* Sequence) (width of picture: 2.7 cm)

3 – Borings grade from the cemented hardground (3rd order cycles sequence boundary) into bed 5 at Groß-Flothe. The open cavities are infilled with calcareous muds. The infill exhibits sometimes (left side of the picture) graded bedding (width of picture: 6.5 cm)

4 – Contact between the hardground (wackestone of the uppermost *flexuosum* Sequence) and the overlying debrite/conglomerate complex (bioclastic wacke/packstone of the basal *Didymotis* Sequence) at Groß-Flothe (width of picture: 2.7 cm)

5 – Conglomeratic layer at Groß-Flothe (bioclastic wackestone), consisting of echinoderm debris, planktonic and benthonic foraminifera, calcispheres and spicules (width of picture: 2.7 cm)

6 – Same as Fig. 5, here with calcispheres, 1) spines or regular echinoids, 2) asteroid ossicles, 3) heterohelicids, 4) hedbergellids, 5) spicules (width of picture: 4.1 cm)

7 – Echinoderm debris at Groß-Flothe (bioclastic wackestone) with abundant echinoderm fragments [spines of regular echinoids, thick-shelled echinoderm debris of *Echinocorys* (?), thin shelled debris of irregular echinoids (*Sternotaxis*?), asteroid ossicles], inocerimid-debris, shells of *Spondylus* sp. (1), *Lenticulina* sp., biserial textulariid foraminifera, planktonic foraminifera, calcispheres and spicules, of subordinate importance Ostracodes (width of picture: 7 cm)

8 – Bioclastic calcisphere wackestone above the echinoderm debrite at Groß-Flothe (bed 8), indicating renewed authochthonous sedimentation (TST of the *Didymotis* Sequence) (width of picture: 4.9 cm)
PLATE 2

1 – Limonitized sponge from the Sponge Bed of Nettlingen, late HST of the Hyphantoceras Sequence (× 1).

2 – Cystispongia bursa (QUENSTEDT), Heteromorph Beds of Groß-Flöthe (bed 5), HST of the flexuosum Sequence (× 1).

3 – Associated ossicles of Metopaster sp. (?), Heteromorph Beds at Groß-Flöthe (bed 5), HST of the flexuosum Sequence (× 1)

4 – Hirudocidaris sp., bed 5 at Nettlingen, TST of the Didymotis Sequence (× 1)

5 – Subprionocyclus normalis (ANDERSON), loose from the lower Heteromorph Beds (approximately base of bed 5) at Groß-Flöthe, HST of the flexuosum Sequence (× 1)

6 – Lewesiceras mantelli WRIGHT & WRIGHT, base of the exposed strata at Groß-Flöthe. It belongs to the desmoceratid ammonite assemblage of the Hyphantoceras Event sensu KAPLAN (1991), TST of the flexuosum Sequence (× 1)

7 – Neocrioceras sp. aff. paderbornense (SCHLÜTER), Heteromorph Beds (bed 1) at Nettlingen, uppermost flexuosum Sequence (× 1)

8 – Hyphantoceras flexuosum (SCHLÜTER), base of the exposed strata at Groß-Flöthe. It occurs together with Lewesiceras mantelli in the desmoceratid ammonite assemblage of the Hyphantoceras Event sensu KAPLAN (1991), TST of the flexuosum Sequence (× 1)

9 – Large hinge of Inoceramus hercules HEINZ from the Heteromorph Beds (bed 5) at Groß-Flöthe, uppermost flexuosum Sequence. Original size: 20 × 9 cm