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ABSTRACT: 

~DZIERSKI, M. & UCHMAN, A. 2001. Ichnofabrics of the Upper Cretaceous madstones in the Opole region, southern 

Poland. Acta Geologica Poionica, 51 (1), 81-91. Warszawa. 

Two basic types of ichnofabrics occur in the madstone-dominated Turonian-Coniacian deposits in the Opole region, 

namely the Thalassinoides and Chondrites ichnofabrics. Trace fossils (Chondrite.\~ Ophiomorpha, Palaeophycus, 

Phycosiphon, Planolite5~ Taenidium, Teichichnus, Thalassinoides, Trichichnus) indicate the Cntziana ichnofacies. In the 

Thalassinoides ichnofabric, the trace fossils occur almost entirely against a totally bioturbated background, indicating rel­

atively well-oxygenated sediments. In the Chond/ites ichnofabric, trace fossils are smaller and the background is almost 

entirely bioturbated. Only in the lower part of the Odra quarry section, primary lamination is locally preserved. 

Generally, the Chond/ites ichnofabric indicates less oxygenated and possibly deeper sediments than the Thalassinoides 

ichnofabric. Occurrence of the Chondrites ichnofabric in the Lower Turonian and Upper Lower Coniacian can be relat­

ed to widely known anoxic events. 

Keywords: Ichnofabrics, Trace Fossils, Palaeoenvironment Analysis Marlstones, 
Cretaceous, Poland. 

INTRODUCTION 

Transformation of primary sediment fabric by bur­
rowing organisms is very strong in some deposits. 
Organisms produce determinable structures known as 
trace fossils and undeterminable biodeformational struc­
tures. The latter commonly have been neglected in ich­
nological analysis of palaeoenvironments, however, both 
of them are a source of important information. A more 
complete picture can be obtained by studies of structures 
and textures of sediments formed by burrowing organ­
isms, where determinable and undeterminable structures 
are involved, i.e. by analysis of ichnofabrics, which have 
been initiated in the Eighties for the Upper Cretaceous 
chalk (EKDALE & BROMLEY 1983, BROMLEY & EKDALE 
1986). Recently, ichnofabric analysis is a dynamically 
developing sub-discipline of ichnology, used for instance 

by oil companies for analysis of cores. Especially fine­
grained sediments, which appear as homogenous, are sus­
pected to be strongly bioturbated. They need a careful 
ichnofabric analysis for understanding of depositional 
processes and determination of other important features 
of their palaeoenvironment. 

The above outlined problems encouraged us to study 
the ichnofabrics in a thick succession of the Upper 
Cretaceous marly deposits of the Opole region in the 
southern Poland (Text-figs 1, 2), which are important 
resources of the cement industry. Presenting the results of 
these studies is the main aim of this paper. Trace fossils in 
these deposits are known from earlier studies. Pyritized 
fillings of some burrows in the so-called Lower Marls in 
the Odra quarry have been described by KUTYBA (1977) 
who determined part of them as Thalassinoides. LIPIARSKI 
& TARKOWSKI (1989) recognized Thalassinoides suevicus 
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Fig. 1. Geological and locality maps of the Opole region 

and Chondrites in the Odra and Bolko quarries in Opole. 
Nevertheless, more systematic ichnological studies have 
never been carried out for these deposits. Almost all illus­
trated specimens are housed at the Institute of 
Geological Sciences of the lagiellonian University in 
Krakow (acronym 161P). 

GEOLOGICAL SETIING 

Epicontinental marls, marlstones, marly mudstones 
and marly limestones form the main part of the so-called 
Opole Cretaceous (kreda opolska). They fill up the 
Opole Trough (Opole Depression) (e.g. BIERNAT 1960, 
BOSSOWSKI & SAWICKI 1968) (Text-figs 1, 2, 3), in which 
they rest discordantly upon the Devonian, Carboniferous, 
Permian, and Triassic basement, and are covered discor­
dantly by Miocene and Quaternary deposits. They form a 
small monocline with a gentle western dip, which is cut by 
a few faults oriented approximately WNW-ESE 
(KOTANSKI & RADwANsKI 1977). 

The history of study of discussed deposits goes back 

to the XIX-th century. The work "Geologie von 
Oberschlesien" by ROEMER (1870) was the main geo­
logical study about the Opole Cretaceous for decades. 
After that, knowledge about stratigraphy, lithology, 
tectonics structure and sedimentary environments of 
Opole Trough has been still improved (e.g. LEONHARD 
1898, ASSMAN 1926, BIERNAT 1960, ALEXANDROWICZ 
1974, KOTANSKI & RADwANsIa 1977, KLAPcINsIa & 
TEISSEYRE 1981, KOZDRA 1993, .K:!;:DZIERSKI 1995). In 
1973 ALEXANDROWICZ & RADWAN proposed subdivi­
sion of the Opole Cretaceous into six units on the base 
of the content of CaO. Lately WALASZCZYK (1988, 
1992) and TARKOWSKI (1991) published a detailed 
inoceramid stratigraphy. According to them the Odra 
quany represents the Middle to Upper Turonian, and 
the Folwark quarry the Upper Turonian and Lower to 
Middle Coniacian. To agree with the new scheme of 
Coniacian inoceramid stratigraphy the uppermost part 
of Folwark quarry belongs to upper Lower Coniacian 
(e.g. WALASZCZYK & WOOD 1998). 

Palaeonvironment of the Opole Cretaceous was con­
sidered as a shallow, rather calm sea below storm wave 
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Fig. 2. Stratigraphic column of the studied sections 

base (e.g. BIERNAT, 1960). WALASZCZYK (1992) ascribed 
the discussed deposits to the bedded marly chalk facies. 
KOZDRA (1993) placed the sedimentation at outer shelf 
depths on the base of foraminifers. Deposits of the Opole 
Trough represent a single transgressive - regressive cycle, 
which began in the Cenomanian, with maximum flooding 
during the Late Turonian, and regression since the 
Coniacian (e.g. TARKOWSKI 1991). 

More informations about the geological setting and 
history of study have been given by WALASZCZYK (1988, 
1992) and TARKOWSKI (1991). 

STUDIED SECTIONS 

The Odra and Folwark quarries, which together rep­
resent the most complete surface section of the Opole 
Cretaceous, have been chosen for study of ichnofabrics. 
The Odra Quarry is situated close to the centre of 
Opole, along the Luboszycka street, in the northern part 
of the "Chabry" housing estate (Text-fig. 1). The section 
(Text-figs 2, 4) represents 25 m-thick Middle - Upper 
Turonian deposits (Inoceramus apicalis, I lamarcki and 
I costellatus Inoceramid Zones; WALASZCZYK 1992). 
According to ALEXANDROWICZ & RADWAN (1973) this 
section contains the Lower Clayey Marls, Lower Marls, 
and the Marly Limestones Units (Text-fig. 2). Generally, 
marly claystones, clayey marls and marls dominate in 
the lower and middle part, and marly nodular lime­
stones in the upper part of the section. They display 
rhythmic bedding (Text-fig. 3). Typically, marlstone -
claystone rhythms are 1-3 m thick. Generally, total con­
tent of calcium carbonate increases upwards. The sedi­
ments in the lower part (Lower Clayey Marls unit) are 
dark grey in colour at the base and become gradually 
light grey at the top, reflecting an increase in carbonate 
content. Macrofossils, such as inoceramids, echinoids, 
brachiopods or sponges are very common. Locally, they 
are concentrated in distinct horizons (see WALASZCZYK 
1988, 1992; TARKOWSKI 1991). In thin-sections, 
foraminifers are very abundant. 

The Folwark Quarry is located close to the country 
road No. 49, about 5 km south of Opole, between the vil­
lages of Chrzowice, Chrzqszczyce and Folwark (Text-fig. 
1). The Upper Marls and Upper Clayey Marls Units 
(ALEXANDROWICZ & RADWAN 1973) crop out here in a 30 
m-thick section (Text-figs 3, 4). They belong to the Upper 
Turonian - Lower Coniacian substages (Mytiloides incer­
tus, Cremnoceramus waltersdo/fensis, C. defOimis erectus 
and C. crassus + C. defOimis Inoceramid Zones; 
WALASZCZYK 1992, WALASZCZYK & WOOD 1998) (Text­
fig. 2). Strongly bioturbated dark grey clayey marlstones 
dominate. They are rhythmically interbedded with marly 
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claystones forming 1-4 m thick packages (Text -fig. 3). The 
uppermost part of the section consists of 3 m thick, slight­
ly siliceous marlstones interbedded with 0.7 m thick, soft 
marly claystones. Macrofossil are dominated by inocer­
mids. Brachiopods, echinoids, ammonites and sponges 
are also common. Foraminifers are the most common 
microfossils. The siliceous marls contain abundant radio­
laria (KOZDRA 1993). Generally, the carbonate contents 
decreases upwards. 

ICHNOFABRIC ANALYSIS 

Material and methods 

Ichnofabrics have been analysed in polished slabs 
prepared from systematically collected samples through 
the investigated sections. Some trace fossils have been 
observed on parting surfaces in the field and in laborato­
ry. For improvement of colour contrast, the polished sur­
faces have been oiled (Buschinsky oil technique, 
BROMLEY 1981). Several additional sections through the 
specimens were made to enable three-dimensional obser­
vations of the ichnofabriscs. 

TRACE FOSSILS 

Chondlites ispp. (PI. 1, Figs 1-2, 5, 7; PI. 2, Fig 4; PI. 3, 
Figs 1-6; PI. 4, Figs 1-2, 4-5; PI. 5, Figs 2,6) is a system of 
tree-like sharp-angle branching, downward penetrating, 
flattened tunnels, 0.3-1.5 mm in diameter. In cross-sec­
tion, they appear as patches of circular or elliptical small 
spots and short bars. Fill of the trace fossil is darker or 
lighter than the host rock. Specimens observed on sub 
horizontal parting surfaces in the upper part of the 
Folwark section and in the lower part of the Odra section 
display straight tunnels, less than 1 mm wide, and sharp­
angle branching typical of Chondrites intricatus 
(BRONGNIART). Probably, most specimens observed in 
cross-section belong to this ichnospecies. In the Folwark 
quarry, some Chondlites display winding tunnels, which 
are about 1.5 nun wide. They belong to Chondlites tar­
gionii (BRONGNIART). Some fillings of Chondrites display 
coarser grains and faint menisci (PI. 5, Fig. 6). For more 
information about Chondrites see Fu (1991) and 
LlCHMAN (1999). 

OphiomO/pha isp. (PI. 1, Fig. 3) occurs as oblique, 
tubular walled trace fossils, 12-15 mm in diameter, cov­
ered with indistinct knobs, filled with darker material 
than the host rock. The knobby wall is the diagnostic fea­
ture of OphiomO/pha (e.g. FREY & al. 1978). 
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Phycosiphon isp. (PI. 1, Fig. 4; PI. 4, Fig. 6) is observed 
in vertical cross-sections as patches of dark, elongated 
spots, about 1 mm in diameter, surrounded by a light 
mantle. Appearance of this form conforms to 
Anconichnus hOlizontalis KERN (GOLDRING & al. 1991), 

which has been included in Phycosiphon incertum 

FISCHER-OOSTER (WETZEL & BROMLEY 1994). 
Palaeophycus isp. (PI. 1, Figs 5, 7) occurs as horizontal 

to sub horizontal tubes with a distinct wall, 4 mm in diam­
eter. 

Planolites isp. (PI. 1, Figs 1-2,5-6; PI. 3, Figs 1,4,6; PI. 
4, Figs 1-4; PI. 5, Figs 1-5) is a horizontal to subhorizon­
tal, stright to slightly winding, unlined cylindrical trace 
fossil, 2-6 mm wide, filled with darker or rarely lighter 
sediment than the host rock. In some horizons, the filling 
is pyritized (see KUTYBA 1977). For discussion of 
Planolites see PEMBERTON & FREY (1982) and KEIGHLEY 
& PICKERILL (1995). 

Taenidium isp. (see PI. 1, Fig. 9; PI. 3, Fig. 5) is an 
oblique, unwalled, simple, tubular, meniscate trace fossil 
filled with darker sediment than the host rock. It is 1-2 
mm in diameter. Taenidium was discussed by 
D'ALESSANDRO & BROMLEY (1987) and KEIGHLEY & 
PICKERILL (1994), who regarded it as the product of 
vagile, deposit-feeding organisms, but LOCKLAIR & 
SAVRDA (1998) suggested that at least some Taenidium 
were produced by a sessile worm maintaining a connec­
tion to the sediment surface or shallow subsurface and 
keeping pace with sediment accumulation. 

Teichichnus isp. (PI. 1, Fig. 8; PI. 4, Fig. 5) appears as 
vertically or obliquely stacked spreite laminae in a zone, 
which is 4 mm wide, 16 high, and at least 50 mm long. 
Teichichnus, discussed for instance by FILLION & 
PICKERILL (1990), is traditionally regarded as fodinich­
nion '(e.g. HANTZSCHEL 1975), but LOCKLAIR & SAVRDA 
(1998) suggested that it can be produced by a surface 
detritus feeder transporting waste down the burrow. 

Thalassinoides isp. (PI. 1, Figs 1, 9; PI. 2, Figs 1-4; PI. 
3, Figs 1, 3-4; PI. 4, Figs 1-6) is a walled or unwalled trace 
fossil composed of cylindrical, mostly horizontal, 
branched tunnels, which are 12-25 mm wide in most spec­
imens. Filling of the tunnels is darker than the host rock. 
Rarely, some tunnels contain plant detritus (PI. 2, Fig. 2). 
In some horizons, they are pyritized (KUTYBA 1977) (PI. 
2, Fig. 3). Specimens observed on horizontal surfaces dis­
play characteristic Y -shaped branchings, which are typical 
of Thalassinoides suevicus (RIETH). Exceptionally, a very 
large specimen of this ichnospecies has been found in the 
Odra quarry (PI. 2, Fig. 1). Its tunnels are about 100 mm 
wide. It is highly probable, that most forms observed in 
cross-section belong also to T. suevicus. Locally, vertical 
shafts associated with the horizontal systems occur (PI. 4, 
Fig. 3). Probably, they have joined the burrow system to 

the sea-floor. For discussion of Thalassinoides see FREY 
& al. (1984). 

Tiichichnus linerm7s FREY (PI. 2, Fig. 5; PI. 3, Fig. 6) is 
a vertical to oblique, rarely horizontal, straight to curved, 
simple or rarely branched, very thin, cylindrical trace fos­
sil, which is 0.2-0.8 mm in diameter. It is filled with weath­
ered pyritic material. For discussion of Trichichnus see 
FILLION & PICKERILL (1990) and UCHMAN (1995, 1999). 

Tiichichnus isp. (PI. 2, Figs 6-7) is a vertical to hori­
zontal, straight to curved, simple or rarely branched, thin 
cylindrical trace fossil, which is 1.2-2.2 mm in diameter. It 
is filled with weathered pyritic material. So far known ich­
nospecies of Tiichichnus are less than 1 mm in diameter 
(see diagnosis of this ichnogenus by FILLION & PICKERILL, 
1990). The described form displays all features of 
Tiichichnus except for the size, but we are of the opinion 
that the size limit should be enlarged. This problem needs 
further study. 

Ichnofabrics 

Two main types of ichnofabrics are distinguished, 
namely the Thalassinoides and Chond/ites ichnofabrics 
(Text-fig. 5). 

The Thalassinoides ichnofabric (PI. 4, Figs 1-4) is 
characterised by a totally bioturbated background, walled 
or unwalled Thalassinoides, Planolites, light or dark 
Chond/ites, Tiichichnus andPhycosiphon. Chond/ites cross 
cuts Thalassinoides and Planolites. Planolites is cross cut 
by Thalassinoides, but reverse situations also occur. 
Phycosiphon cross cuts Planolites and Thalassinoides, but 
in some cases patches of Phycosiphon are cross cut by 
Thalassinoides (PI. 4, Fig. 6). Tiichichnus cross cuts all 
other trace fossils. Other trace fossils (Taenidium, 

Teichichnus, OphiomOlpha, Palaeophycus) are very rare. 
Palaeophycus is cross cut by Chondrites. In several cases, 
different generations of Thalassinoides cross cut each 
other (e.g. PI. 4, Fig. 3), forms with better outlined margin 
cross cutting commonly forms with less outlined margin. 
Phycosiphon occurs commonly in small patches. The bio­
turbated background is characterised by diffuse mottling. 
The Thalassinoides ichnofabric occurs in marly lime­
stones, marlstones, and in marly mudstones. It dominates 
in the middle part of the Odra quarry section and in the 
lower and middle part of the Folwark quarry section. 

A peculiar kind of the Thalassinoides ichnofahric 
occurs in the nodular marlstones of the upper part of the 
Odra quarry section, and locally from the Folwark sec­
tion, where it is strongly transformed by diagenesis. Trace 
fossils display here much lower colour contrast. They are 
commonly deformed by growing nodules and are cut by 
solution seams (PI. 4, Fig. 2). 
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The Chondrites ichnofabric is characterised by a total­
ly bioturbated background, dominance of elite 
Chondrites, which cross cuts rarely occurring Planolites 

and small Thalassinoides (PI. 3, Figs 1-6). Locally, 
'Dichichnus occurs, altogether more frequently than in 
the Thalassinoides ichnofabric. It cross cuts the remaining 
trace fossils. This ichnofabric occurs mainly in marly 
mudstones (Lower Clayey Marls) in the lower part ofthe 
Odra quarry section and in siliceous marlstones (Upper 
Clayey Marls) of the upper part of the Folwark quarry 
section. 

Locally, thin (1-2 mm), dark non-bioturbated laminae 
occur (PI. 2, Fig. 8; PI. 3, Fig. 3) within the Thalassinoides 

ichnofabric. In a few cases two converging laminae have 
been observed. The laminae seem to cut the ichnofabric. 
Their origin is not clear. There is no evidence that they 
belong to poorly preserved Zoophycos or any other pri­
mary structure. In horizontal section the laminae are 
structurless. Locally, solution seams are observed along 
them. In some places they enveloped, nodule-like small 
portions of gray marlstone. This suggests a diagenetic 
rather than primary origin. 

DISCUSSION 

The trace fossil assemblage of the Thalassinoides ich­
nofabrics is typical of the CTUziana ichnofacies, which is 
most characteristic of poorly sorted unconsolidated sub­
strates of subtidal zones between fair-weather wave base 
and storm wave base (FREY & SEILACHER 1980; FREY & 
PEMBERTON 1985). However, FREY & al. (1990) and 
PEMBERTON & al. (1992b) noted that the Ouziana ichno­
facies can also occur in tidal-flat, lagoonal, or estuarine 
environments, but a presence of stenohaline organisms, 
ego echinoids, suggests normal salinity marine conditions. 
The examined assemblage contains the typical trace fos­
sils of the Ouziana ichnofacies, such as Teichichnus 

(SEILACHER 1967; PEMBERTON & al. 1992a, b) or variable 
oriented Thalassinoides and OphiomOlpha (FREY & 
SEILACHER 1980). The trace fossils were produced by 
deposit feeders (e.g. Thalassinoides, Teichichnus) and by 
suspension feeders (OphiomOlpha (?). Presence of these 
two trophic groups characterises the CTUziana ichnofacies 
(FREY & SElLACHER 1980). Chondrites and 'Dichichnus 

are rather typical of deeper, fine-grained low energetic, 
less oxygenated, fully marine environments. The 
Chondrites ichnofabric dominated by Chondlites repre­
sents probably deeper parts of the CTUziana ichnofacies. 
Chondrites is abundant in the upper offshore siliciclastic 
facies of the North American Seaway, and it became rare 
in the middle shoreface, where the distal CTUziana ichno­
facies occurs (MAcEACHERN & PEMBERTON 1992). 

The Thalassinoides ichnofabric is very similar to the 
ichnofabrics of the Thalassinoides-dominated shallower­
shelf chalk, in contrast to the Zoophycos-dominated 

deep-water settings of epicratonic and deep-sea chalk 
(EKDALE & BROMLEY 1984). The ichnofabric of the 
nodular marlstones is similar to some extent to the ichno­
fabric from nodular chalk from England (KENNEDY & 
GARRISON 1975), but it is very poorly developed. 

The Chondlites ichnofabric indicates less oxygenated 
deposits than the Thalassinoides ichnofabric. Chond/ites is 
common in poorly oxygenated deposits (BROMLEY & 

EKDALE 1984). Trace fossil diversity is lower in the for­
mer, and size of trace fossils is smaller. This is the typical 
phenomenon related to oxygen restricted environments 
(e.g. SAVRDA 1992, 1995, 1998, and references therein). 
Nevertheless, evidence of longer anoxia allowing for for­
mation of laminated layers, is ahnost absent. Only in a 
few centimetres thick layer from the lower part of the 
Odra quarry section, poorly preserved primary lamina­
tion occurs (PI. 2, Fig. 9). Very short anoxic events were, 
however, possible, but hypothetical thin layers related to 
these events were completely destroyed by subsequent 
bioturbation. It is not excluded that the very dark filling of 
some trace fossils derives from such layers. 

There is a basic problem concerning the origin of the 
colour contrast between background and filling of the 
trace fossils. Some deeper open burrows, especially when 
abandoned, may have been depleted of oxygen. 
Formation of pyrite, especially along burrow walls that 
were lined with mucus, can take place very easy. Small 
pyrite particles can be responsible for the dark colour of 
some fillings. This diagenetic origin of the colour contrast 
may be true of some Thalassinoides and Planolites from 
the lower part of the Odra quarry section (PI. 2, Fig. 3; PI. 
5, Figs 3-4) and should be treated rather as an exception. 
More likely, however, the colour contrast results from pri­
mary heterogeneity of sediments. Centimetre or decime­
tre thick layers of darker sediments enriched in organic 
matter and clay minerals can be deposited alternately 
with lighter layers of sediments enriched in carbonates 
and depleted of organic matter. Such a layering is com­
mon in fine-grained hemipelagic and pelagic environ­
ments and is related to Milankovitch cyclicity (FISCHER 
1986, DE BOER & SMITH 1994). Burrows produced in 
lighter layer can be filled with sediments from the darker 
layer and vice versa. They form the so-called piping zone. 
Such a rhythmic layering with distinct piping zones has 
been recognized in the Upper Cretaceous Demopolis 
Chalk in Alabama, USA (LoCKLAIR & SAVRDA 1998). 

Primary layering at a decimetre scale is only locally 
and then poorly preserved in the lower part of the Odra 
quarry section (Lower Clayey Marls), at the transition 
from the darker deposits with the Chond/ites ichnofabric 
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to the lighter deposits with the Thalassinoides ichnofabric 
(PI. 2, Fig. 10). Dark filled trace fossils occur in a few light 
marlstone beds and form a piping zone. In the remaining 
part of the studied section only locally very indistinct 
colour changes reveal the primary layering. Nevertheless, 
traces of primary layering are evidence of rhythmic sedi­
mentation of the studied deposits, which can be related to 
a cyclicity. Scour cycles, manifested mainly by omission 
surfaces can be excluded because the latter were not 
found. The nodular marlstones from the upper part of the 
Odra quarry display dissolution surfaces, but it is not clear 
whether they can be related to some dissolution cycles or 
only to nodule formation. For the remaining part of the 
sections, by the elimination, only productivity and dilu­
tion cycles remain to account for the primary layering. 

Apart of the problematic decimetre scale rhythms, 
there are a few metres thick rhythms expressed by varia­
tions in the content of calcium carbonate. They lasted 
about 100 Ky, as can be calculated from the inoceramid 
stratigraphy by WALASZCZYK (1992). This corresponds to 
Milankovitch' eccentricity cycles. In consequence, the 
decimetre scale rhythms may be related to obliquity or 
precession cycles. However, these problems need further 
studies. 

Primary differences in sediment characters are also 
indicated by diffrent grain size in the burrow fillings and 
background sediment. Especially some T71alassinoides 
(PI. 3, Fig. 4) and Planolites (PI. 5, Figs 1-2) from the 
Thalassinoides ichnofabric contain coarser, calcarenitic 
sediment, while the background is composed of calcilu­
titic sediment. Probably, the calcarenitic sediment was 
transported into deeper environments by storms. 
Nevertheless, thin tempestite beds are not preserved 
owing to intensive bioturbation. Similar processes have 
been described from the Caribbean region (WANLESS & 
al. 1988, TEDESCO & WANLESS 1991), where some recent 
storm-derived sediments are preserved only in 
Callianassa burrows and form so-called tubular tem­
pestites. The absence of tempestites preserved in beds in 
the investigate sections suggests indirectly a deeper and 
calmer environment beyond the range of thick tem­
pestites, which would have resisted destruction by biotur­
bation. 

It was considered that the discussed deposits repre­
sent a single transgressive - regressive cycle with a 
Late Turonian maximum of transgression (ALEKSAN­
DROWICZ 1974, TARKOWSKI 1991). The cited authors 
regarded the clayey units, especially the Lower Clayey 
Marls and the Upper Clayey Marls, to have been sup­
plied with clay minerals from the land. The most cal­
Cal'eous Marly Limestone Unit in their opinion was 
deposited in a wide basin, far away from the land, in a 
deeper setting, with minimum influence of terrigenous 

material. In our opinion the opposite explanation is 
possible, which corresponds well to the sea level curve 
of HAQ & al. (1987). The Marly Limestone Unit repre­
sents much shallower palaeoenvironments than under­
lying and overlying more clayey units. The background 
supply of clay was constant, but production of carbon­
ate fluctuated and derived mainly from coccol­
ithophorids (K!;:DZIERSKI, 1995). 

The Chond/ites ichnofabric can be related to Oceanic 
Anoxic Events (OAE). In the lower part of the Odra 
quarry (Lower Clayey Marls) it corresponds to the OAE 
at the Cenomanian/Turonian boundary and Early 
Turonian (e.g. ARTHUR & SCHLANGER 1979; JENKYNS, 
1980). The Chond/ites ichnofabric in the upper part of the 
Folwark quarry (Upper Clayey Marls) can be connected 
to the Middle Coniacian OAE (e.g. ARTHUR & 
SCHLANGER 1979; JENKYNS 1980). In the siliceous marls 
rich in radiolaria (Upper Clayey Marl), the Chond/ites 
ichnofabric may also reflect a deeper palaeoenvironment. 
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PLATE 1 

Trace fossils from the Opole marls 

1 - Chond/ites isp. (Ch) and Planolites isp. (PI). Weathered horizontal parting sur­
face. Siliceous marlstone (Upper Clayey Marls), Folwark quarry, I6IP8. 

2 - Chond/ites isp. (Ch),Planolites isp. (PI) and Thalassinoides isp. (Th). Polished and 
oiled slab, vertical section. Marlstone (Upper Marls), Folwark quarry, 16IP9 (FIS). 

3 - OphiomOlpha isp. Horizontal parting surface. Marlstone (Upper Marls), Folwark 
quarry, I6IPlO(F30). 

4 - Phycosiphon isp. (Ph). Polished and oiled slab, vertical section. Marlstone (Upper 
Marls), Folwark quarry, F4. 

5 - Palaeophycus isp. (Pa), Chond/ites isp. (Ch) and Planolites isp. (PI). Polished and 
oiled slab, vertical section. Marlstone (Lower Marls), vertical cross section. Odra 
quarry, I6IPll(PI2). 

6 - Planolites isp. Horizontal parting surface. Marlstone (Upper Marls), Folwark 
quarry, I6IPI2(F29). 

7 - Palaeophycus isp. (Pa) and Chond/ites isp. (Ch). Polished and oiled slab, vertical 
section in marlstone (Lower Marls). Odra quarry, PIS. 

8 - Teichichnus isp. Polished and oiled slab, oblique section in marlstone. Folwark 
quarry (Upper Marls), I6IP13(FIS). 

9 - Taenidium isp. (Ta) and Thalassinoides isp. (Th). Polished and oiled slab, oblique 
section in madstone (Upper Marls). Folwark quarry, I6IP14(FI7). 
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PLATE 2 

Trace fossils and ichnofabrics from the Opole marls 

1-Large Thalassinoides isp. Horizontal parting surface. Marlstone (?Lower Marls), 
Odra quarry. Field photography. Courtsey by J. SZULC. 

2 - Thalassinoides isp. filled with carbonized plant detritus. Marlstone (Lower 
Marls), Odra quarry. Field photography. 

3 - Pyritized Thalassinoides isp. Horizontal parting surface. Marlstone (Lower 
Clayey Marls), Odra quarry. 161Pl. 

4 - Thalassinoides isp. (Th), Chondrites isp. (Ch) and Planolites isp. (PI). Polished and 
oiled slab, vertical section. Marlstone (Upper Marls), Folwark quarry, 161P2(FlO). 

5 - Trichichnus linearis FREY. Vertical parting surface. Marlstone (Lower Clayey 
Marls), Odra quarry, 161P3. 

6 - Trichichnus isp. Vertical parting surface. Marlstone (Lower Clayey Marls), Odra 
quarry. 161P4. 

7 - Trichichnus isp., horizontal parting surface; marlstone (Upper Clayey Marls), 
Folwark quarry, 161P5(F55). 

8 - Black lamina in vertical cross-section, polished and oiled surface, vertical section; 
marlstone (Upper Marls), Folwark quarry, 161P6(F2). 

9 - Partially bioturbated muddy marlstone, primary lamination in the upper part; 
Lower Clayey Marls, Odra quarry, 161P7. 

10 - Small scale-rhythmicity in the Lower Clayey Marls, Odra quarry; light biotur­
bated marlstone layer interbedded with darker, partially bioturbated muddy marl­
stones; field photography. 
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PLATE 3 

Chondrites ichnofabrics from the Opole marls in polished and oiled slabs 

1 - Chondrites isp. (Ch), Planolites isp. (PI), and Thalassinoides isp. (Th); marls 
(Lower Clayey Marls), Odra quarry, P7. 

2 - Chondrites (light fine spots); glauconitic marly mudstone, Lower Clayey Marls, 
Odra quarry, P4. 

3 - Black laminae, Chondrites isp. (Ch) and Thalassinoides isp. (Th); vertical cross 
section; marly mudstone (Lower Clayey Marls), Odra quarry, 161P15(P3). 

4 - Calcarenite mixed with calcilutite by bioturbation, Chondrites isp. (Ch), Planolites 

isp. (PI), and Thalassinoides isp. (Th); vertical cross section; marlstone (Lower 
Clayey Marls), Odra quarry, 161P16(P5). 

5 - Taenidium isp. (Ta) and Chondrites isp. (Ch). Marls (Lower Marls), horizontal 
section; Odra quarry, 161P17(P21). 

6 - Chondrites isp. (Ch), Trichichnus isp. (Tr) and Planolites isp. (PI); note the diage­
netic halo around Trichichnus; siliceous marlstone (Upper Clayey Marls), horizontal 
section, Folwark quarry, 161P17(F52). 
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PLATE 4 

Chondrites ichnofabrics from the Opole marls in polished and oiled slabs 

1 - Chondrites isp. (Ch), Planolites isp. (PI), and Thalassinoides isp. (Th); marl 
(Upper Marls), vertical cross-section; Folwark quarry, 161P18(F19). 

2 - Chondrites isp. (Ch), Planolites isp. (PI), and Thalassinoides isp. (Th) in nodular 
marlstone (Upper Marls), vertical cross-section; Folwark quarry, 161P19(F16). 

3 - Vertical shafts of Thalassinoides isp. (Thv), horizontal Thalassinoides isp. (Th), 
Planolites isp. (PI); in background, several poorly preserved Chondrites; marlstone 
(Lower Clayey Marls), Odra quarry, 161P20(P7). 

4 - Planolites (PI) reworked by Chondrites isp. (Ch) and Thalassinoides isp. (Th); 
madstone (Upper Marls), horizontal section; Folwark quarry, 161P21(F25). 

5 - Teichichnus isp. (Te), Chondrites isp. (Ch), Planolites isp. (PI), and Thalassinoides 

isp. (Th); madstone (Upper Mads), vertical section; Folwark quarry, 161P22(F8). 

6 - Thalassinoides isp. (Th) reworked by Phycosiphon isp. (Ph); vertical cross section; 
madstone (Upper Marls), Folwark quarry, 161P22(F37). 
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PLATES 

Ichnofabrics in microfacies from the Odra quarry 

1 - Planolites isp. burrow (PI) in micritic marlstone filled with biosparite; Lower 
Clayey Marls, P7. 

2 - Planolites isp. burrow (PI) in micritic marlstone filled with biosparite, and re-bur­
rowed by Chondrites isp. (Ch) filled with micritic marlstone; Lower Clayey Marls, P7. 

3 - Planolites isp. burrow (PI) with dispersed pyrite grains; Lower Marls, P12. 

4 - Planolites isp. burrow (PI) at the centre with dispersed pyrite grains; Lower Marls, 
P23. 

5 - Microfacies contrast between Planolites isp. burrow (PI) and background; Lower 
Marls, P24. 

6 - Microfacies contrast between Chondrites isp. (Ch) burrow and background; 
Lower Marls, P23. 
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